

SAMSUNG

BERTMap: A BERT-based Ontology Alignment System

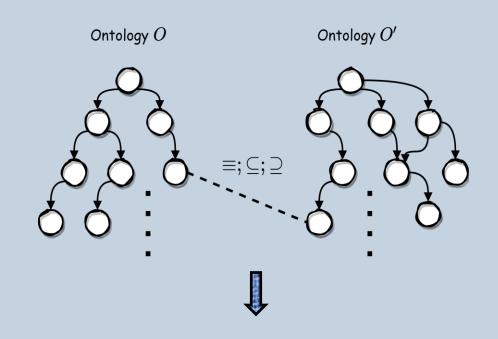
Yuan He¹, Jiaoyan Chen¹, Denvar Antonyrajah², Ian Horrocks¹

Department of Computer Science, University of Oxford¹

Samsung Research UK²

Ontology Alignment (or Matching)

- Entity:____
 - Class
 - Property
 - Instance
- Relationship:
 - Equivalence
 - Subsumption



 $Mapping = \langle e \in O, e' \in O', rel, score \rangle$

36th AAAI Conference on Artificial Intelligence BERTMap: A BERT-based Ontology Alignment System

Challenges

- Disambiguation:
 - Naming:
 - E.g., the concept named *muscle layer* in SNOMED-CT is named *muscularis propria* in FMA.
 - Contexts:
 - E.g., in FoodOn, there are two concepts named *mushroom* that are categorized in both *Plant* and *Food*.
- Search space reduction:
 - Traversing all possible mappings takes $O(n^2)$.

Challenges

- Extreme **positive-negative imbalance**:
 - Matched entity pairs are often of *several orders fewer* than unmatched ones.
 - High-quality reference data is *often not available*, e.g., UMLS is considered as a silver standard (not necessarily *complete* or *correct*). This induces two further issues:
 - Results of automatic evaluation *lack reliability*.
 - Supervised learning setting is often *unfeasible*.

Related Work

- Classic OM systems:
 - LogMap uses its *lexical index* to create anchor mappings, then iteratively alternates between mapping discovery and repair.
 - AML relies on a *mixed matcher* that involves string similarity comparison and many other hand-crafted features.
- Machine learning-based OM solutions:
 - Most of them are *supervised* and rely on sufficiency of *annotated data*, and/or complicated *feature engineering*.
 - Unsupervised OM systems are still using traditional non-contextual embeddings (e.g., Word2Vec) to encode textual information.
 - LogMap-ML is the ML extension of LogMap, which uses the anchor mappings for training and Word2Vec to encode class labels.

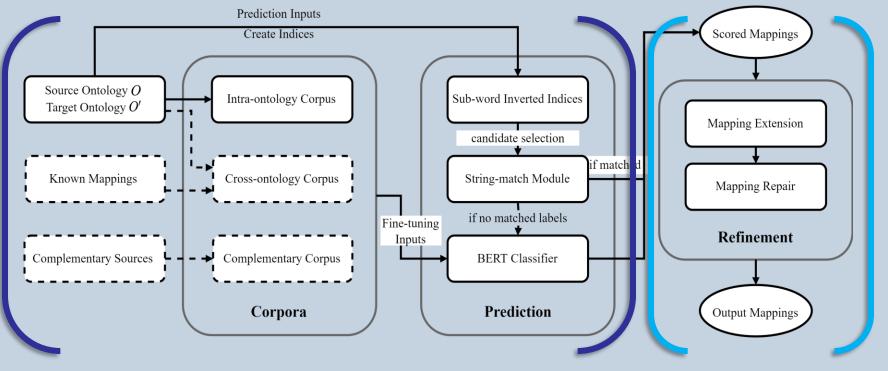
Related Work

- Bidirectional Encoder Representations from Transformers:
 - BERT can compute dynamic (*contextual*) embeddings whereas the traditional word embedding systems (e.g., Word2Vec, GloVe) yield the static (*unified*) word vectors. For example,

The **bank** robber was seen fishing on the river **bank**.

- Pre-train & Fine-tune is a popular learning scheme for language models in NLP.
- Pre-trained BERTs are widely accessible; often, only fine-tuning is needed and it takes 2-4 epochs to achieve convergence.

Model Outline



Make predictions based on the ensemble results of class label (text) classification

Refine mappings through extension & repair

36th AAAI Conference on Artificial Intelligence BERTMap: A BERT-based Ontology Alignment System

Mapping Prediction: Text Semantics Corpora

Ontologies

Synonyms & Non-synonyms Text Semantics Corpora

Synonyms: An ontology class could have multiple *aliases* defined by some annotational properties, e.g., *rdfs:label*, *obolnOwl:hasExactSynonym*.

Note: We considered both reversed and identity synonyms **Non-synonyms** are retrieved from *either* label pairs of two random classes (*soft*) *or* label pairs of logically disjoint classes (*hard*).

36th AAAI Conference on Artificial Intelligence BERTMap: A BERT-based Ontology Alignment System

Mapping Prediction: Text Semantics Corpora

Intra-ontology

(from within an ontology)

• As described in the previous slide.

(from a small portion of given mappings)

- Synonyms are extracted from label pairs of the matched classes.
- Non-synonyms are extracted from randomly aligned classes.

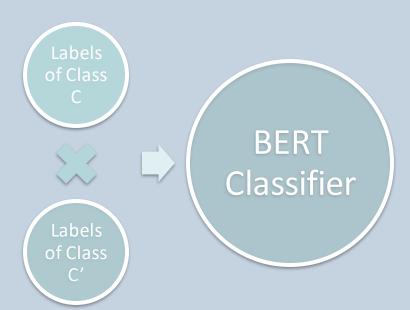
Complementary (from an auxiliary ontology)

Augmenting data for training the synonym classifier.

Mapping Prediction: Synonym Classifier

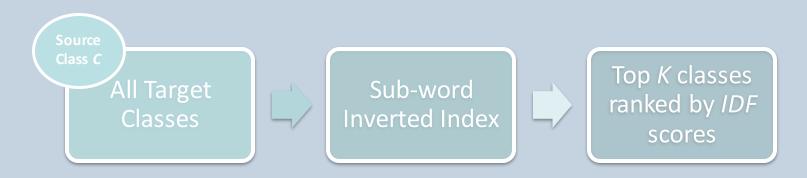
- Our synonym classifier comprises

 a pre-trained BERT model with an extra binary classification layer.
- We fine-tune the BERT classifier on the **text-semantics corpora** constructed from ontologies.
- The similarity score for class C and C' is computed using the average of the synonym scores of the paired labels of C and C'.



36th AAAI Conference on Artificial Intelligence BERTMap: A BERT-based Ontology Alignment System

Mapping Prediction: Candidate Selection

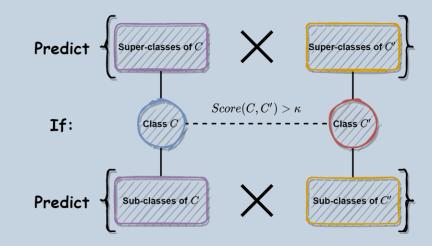


- For each source class *C*, we select top *K* ranked target classes according to **Sub-word Inverted Index**-based *IDF* scores.
- **Outcome**: Reducing the *quadratic* search space to *linear*.
- Limitation: Selected classes are assumed to have *at least one common sub-word token* with the given class.
- Advantages: various word forms can be captured; unknown words are treated as consecutive known sub-words.

Mapping Refinement: Extension

- Locality Principle: Semantically related classes of the matched classes are likely to be matched.
- Outcome: To recall more mappings, especially the ones that violate the assumption of token sharing (in candidate selection).

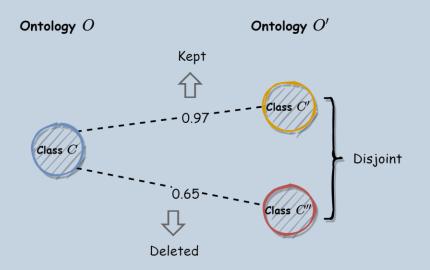
Iteration:



36th AAAI Conference on Artificial Intelligence BERTMap: A BERT-based Ontology Alignment System

Mapping Refinement: Repair

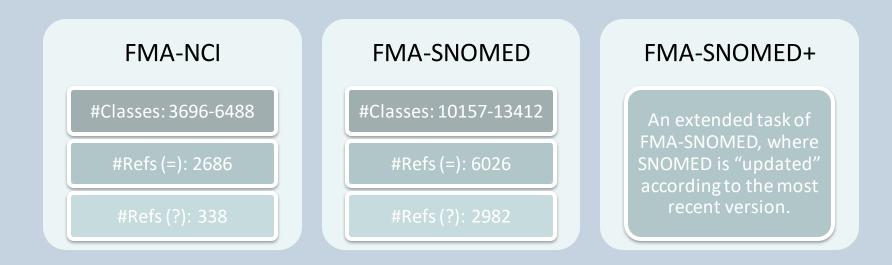
- Issue: Reasoning over each input ontology may lead to *inconsistency* after alignment.
- Solution: Remove a minimal set of mappings (*a.k.a. diagnosis*) to achieve *consistency*.
- Outcome: To improve precision while keeping the recall as much as possible.



 We adopt the mapping repair tool built by Jimenez-Ruiz et al. (2013).

36th AAAI Conference on Artificial Intelligence BERTMap: A BERT-based Ontology Alignment System

Experiment: Task Settings



- FMA-NCI and FMA-SNOMED are extracted from the LargeBio track of OAEI.
- We evaluate all the models by Precision, Recall, and F1, subject to the negligence of mappings in *Refs (?)*.

Experiment: Results

		Hyper-params	Unsupervised			Semi-supervised		
			90% Test Mappings			70% Test Mappings		
	System	$\{ au,\lambda\}$	Precision	Recall	Macro-F1	Precision	Recall	Macro-F1
Ablations	io	(tgt2src, 0.999)	0.705	0.240	0.359	0.649	0.239	0.350
	io+ids	(tgt2src, 0.999)	0.835	0.347	0.490	0.797	0.346	0.483
	io+cp	(src2tgt, 0.999)	0.917	0.750	0.825	0.895	0.748	0.815
	io+ids+cp	(src2tgt, 0.999)	0.910	0.758	0.827	0.887	0.755	0.816
	io+ids+cp (ex)	(src2tgt, 0.999)	0.896	0.771	0.829	0.869	0.771	0.817
	io+ids+cp (ex+rp)	(src2tgt, 0.999)	0.905	0.771	0.833	0.881	0.771	0.822
	io+co	(src2tgt, 0.997)	NA	NA	NA	0.937	0.564	0.704
	io+co+ids	(src2tgt, 0.999)	NA	NA	NA	0.850	0.714	0.776
	io+co+cp	(src2tgt, 0.999)	NA	NA	NA	0.880	0.779	0.826
	io+co+ids+cp	(src2tgt, 0.999)	NA	NA	NA	0.899	0.774	0.832
	io+co+ids+cp (ex)	(src2tgt, 0.999)	NA	NA	NA	0.882	0.787	0.832
Baselines	io+co+ids+cp (ex+rp)	(src2tgt, 0.999)	NA	NA	NA	0.892	0.786	0.836
	string-match	(combined, 1.000)	0.987	0.194	0.324	0.983	0.192	0.321
	edit-similarity	(combined, 0.920)	0.971	0.209	0.343	0.963	0.208	0.343
	LogMapLt	NA	0.965	0.206	0.339	0.956	0.204	0.336
	LogMap	NA	0.935	0.685	0.791	0.918	0.681	0.782
	AML	NA	0.892	0.757	0.819	0.865	0.754	0.806
L	LogMap-ML*	NA	0.944	0.205	0.337	0.928	0.208	0.340

Results on the FMA-SNOMED task.

36th AAAI Conference on Artificial Intelligence BERTMap: A BERT-based Ontology Alignment System

Experiment: Key Observations

- Ablations of **BERTMap** settings:
 - Unsupervised settings can already perform rather well if input ontologies have sufficient class labels;
 - Semi-supervised settings are generally better than unsupervised ones.
 - The *complementary corpus* is extremely useful when input ontologies are deficient in class labels.
 - Mapping extension and repair consistently boost the performance.
- Comparisons to baseline models:
 - BERTMap is better than LogMap and AML on FMA-SNOMED and FMA-SNOMED+ and slightly worse on FMA-NCI.
 - BERTMap is consistently better than the rest of the baselines, including both the string similarity-based symbolic models, and the machine learning model LogMap-ML.

Conclusions

- BERTMap mainly relies on what the input ontologies can provide (unsupervised) and can be further improved by given mappings (semisupervised) and/or complementary resources (data augmentation).
- **BERTMap** considers the *text-level* (in mapping prediction), *graph-level* (in mapping extension), and *logic-level* (in mapping repair) contexts.
- BERTMap adopts a simple but effective candidate selection algorithm, where we use the sub-word inverted indices rather than the word-level ones which (i) require extra text processing and (ii) cannot deal with unknown words.

Future Work

- Benchmarking
 - To conduct more extensive evaluation on *large-scale data*.
 - To consider different application scenarios by using *different* evaluation metrics and human evaluation.
- Model
 - To incorporate more than just equivalence mappings.
 - To develop a more comprehensive and compact model with all sorts of contexts (*text-level, graph-level, logic-level*) collectively considered rather than processed separately.

Thank You!

BERTMap

- https://github.com/KRR-Oxford/BERTMap
- Codes & data for this paper.

DeepOnto

- https://github.com/KRR-Oxford/DeepOnto
- A developing python package for ontology engineering and evaluation.
- BERTMap will be re-implemented as an example model in this package.

This work is funded by Samsung Research UK (SRUK).

