
BERTMap: A BERT-based Ontology Alignment System

Introduction

Ontology Alignment (or Matching)

• To compute a set of mappings ( 𝑒ۦ ∈ 𝑂,
ۧ

𝑒′ ∈
𝑂′, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑠𝑐𝑜𝑟𝑒 ) that indicate the semantic
relationships (e.g., equivalence, subsumption)
between entities of different ontologies.
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Challenges

• Ambiguity in naming schemes and ontology
contexts.

• Aligned concepts with different names: muscle
layer in SNOMED- CT and muscularis propria in
FMA; Different concepts with the same name:
mushroom that is categorized in both Plant and
Food.

• Quadratic alignment search space.

• Extreme positive-negative imbalance (# of correct
mappings ≪ # of incorrect mappings)

Background

• Classic (rule-based) OM solutions: LogMap
[Jiménez-Ruiz et al. ISWC’11] and AML [Faria et al. OTM’13] .

• Machine learning-based OM solutions:

• Supervised ones that rely on sufficient annotated
data and/or complicated feature engineering:
VeeAlign [Iyer et al. OM@ISWC’20] , OntoEmma [Want et

al. BioNLP’18];

• Unsupervised ones that use non-contextual word
embeddings (e.g., Word2Vec): DeepAlignment
[Kolyvakis et al. NAACL’18] , LogMap-ML [Chen et al.

ESWC’21] .

Method
BERTMap in a Nutshell

• Make mapping prediction based on ensembled
results of class label (text) classification.

• Further refine mappings through graph-based
extension and logic-based repair.

Mapping Prediction: Text Semantics Corpora

• Extract synonyms (pairs of labels of the same
class) and non-synonyms (pairs of labels of
distinct classes) from ontologies.

• Sources:

• Intra-ontology (from within input ontologies);

• Cross-ontology (from given mappings);

• Complementary (from an auxiliary ontology).

Mapping Prediction: Synonym Classifier

• Formulate as a text classification task for BERT
fine-tuning;

• 𝐿 ≔ 𝐿𝑎𝑏𝑒𝑙𝑠𝑂𝑓 𝑐 ; 𝐿′ ≔ 𝐿𝑎𝑏𝑒𝑙𝑠𝑂𝑓 𝑐′ ; 𝑁 ≔
|𝐿 × 𝐿′| (# of all label combinations).
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Mapping Prediction: Candidate Selection

• Use sub-word inverted index-based IDF scores to
select 𝐾 candidates for mapping prediction.

• Outcome: Reduce the quadratic search space to
linear.

• Better than word-level because: it can capture
various word forms without extra processing and
deal with unknown words.

Mapping Refinement: Extension

• Iteratively compute new mappings from highly 
scored mappings by searching from the 
respective parents and children of the matched 
entities.

Mapping Refinement: Repair

• Compute an approximate diagnosis such that a 
minimal set of logically inconsistent mappings is
removed. 

Mapping extension (left) and repair (right).

Results on FMA-SNOMED.

• Ablations of BERTMap settings:

• Unsupervised settings can already perform rather
well if input ontologies have sufficient class labels;

• Semi-supervised settings are generally better than
unsupervised ones.

• Complementary corpus is very useful when input
ontologies are deficient in class labels.

• Comparisons to baselines:

• BERTMap attains the best F1 score on FMA-
SNOMED and FMA-SNOMED+, and nearly the best
on FMA-NCI.

FMA-NCI

#Classes: 3696-6488

#Refs (=): 2686

#Refs (?): 338

FMA-SNOMED+

An extended task of 
FMA-SNOMED, where 
SNOMED is “updated” 
according to the most 

recent version.

FMA-SNOMED

#Classes: 10157-13412

#Refs (=): 6026

#Refs (?): 2982

Ablations

Baselines

Hyper-params Unsupervised Semi-supervised

Conclusion & Future Work
• BERTMap is a novel, flexible (unsupervised, semi-

supervised, and additionally augmented), context-
aware (text-level, graph-level, and logic-level),
and scalable (linear mapping search) OM system.

• Future work is around large-scale benchmarking
and a more compact model design.

• Bidirectional Encoder Representations from 
Transformers:
• BERT [Delvin et al. NAACL’19] computes contextual

embeddings for text tokens; BERT training
involves pre-training and fine-tuning.

• Pre-trained BERT models are widely available.

• Fine-tuning requires a moderate amount of

training resources.

Tasks


