

DEPARTMENT OF COMPUTER SCIENCE

Introduction

Ontology Alignment (or Matching)

To compute a set of *mappings* ($\langle e \in O, e' \in O \rangle$ O', relation, score) that indicate the semantic relationships (e.g., equivalence, subsumption) between entities of different ontologies.

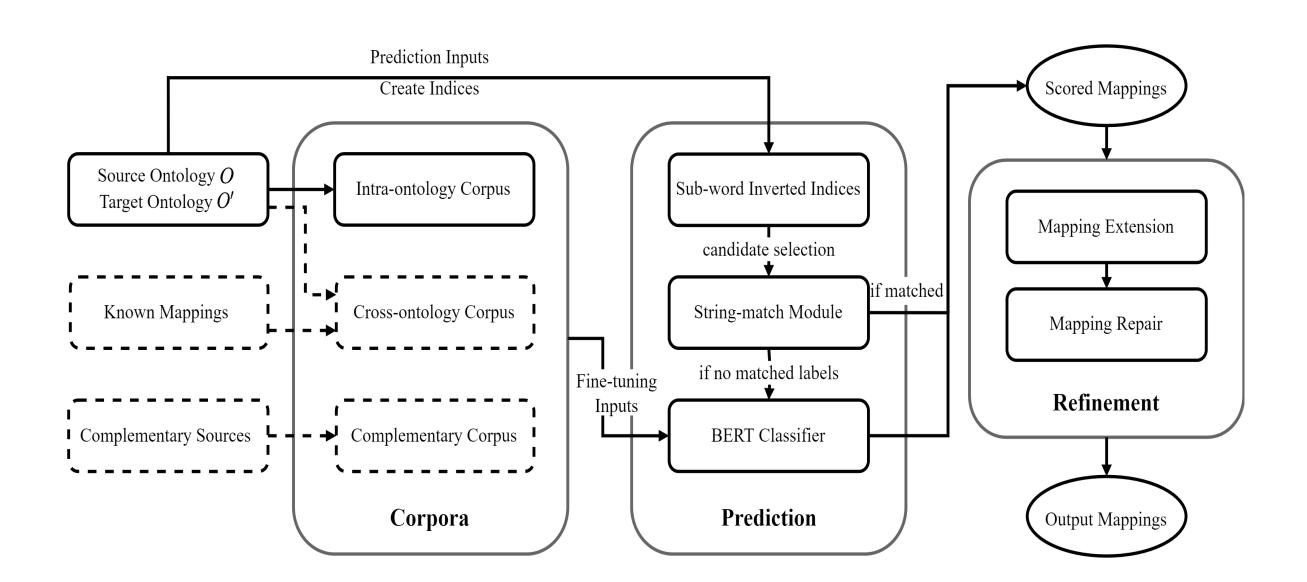
Challenges

- Ambiguity in naming schemes and ontology contexts.
 - Aligned concepts with different names: *muscle layer* in SNOMED- CT and *muscularis propria* in FMA; Different concepts with the same name: mushroom that is categorized in both Plant and Food.
- *Quadratic* alignment search space.
- *Extreme positive-negative imbalance* (# of correct mappings \ll # of incorrect mappings)

Background

- Classic (rule-based) OM solutions: LogMap [Jiménez-Ruiz et al. ISWC'11] and AML [Faria et al. OTM'13] .
- Machine learning-based OM solutions:
 - Supervised ones that rely on sufficient annotated data and/or complicated feature engineering: VeeAlign [Iyer et al. OM@ISWC'20] , OntoEmma [Want et al. BioNLP'18];
 - Unsupervised ones that use non-contextual word embeddings (e.g., Word2Vec): DeepAlignment [Kolyvakis et al. NAACL'18] , LogMap-ML [Chen et al. ESWC'21].

BERTMap: A BERT-based Ontology Alignment System


Yuan He¹, Jiaoyan Chen¹, Denvar Antonyrajah², Ian Horrocks¹ 1. Department of Computer Science, University of Oxford 2. Samsung Research UK

- **B**idirectional **E**ncoder **R**epresentations from **T**ransformers:
 - BERT [Delvin et al. NAACL'19] computes contextual embeddings for text tokens; BERT training involves pre-training and fine-tuning.
 - Pre-trained BERT models are widely available.
 - Fine-tuning requires a moderate amount of training resources.

Method

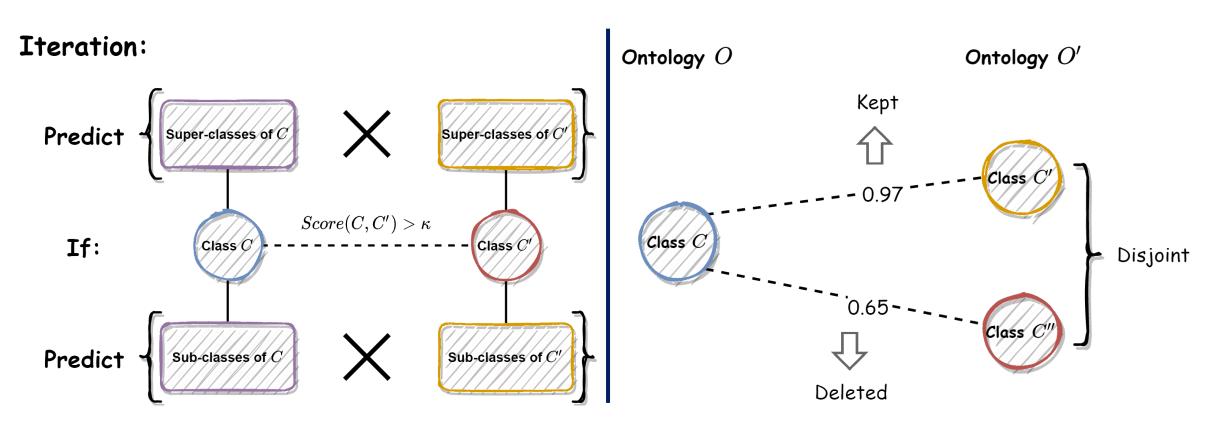
BERTMap in a Nutshell

- Make mapping prediction based on ensembled results of class label (text) classification.
- Further refine mappings through graph-based extension and logic-based repair.

Mapping Prediction: Text Semantics Corpora

- Extract synonyms (pairs of labels of the same class) and *non-synonyms* (pairs of labels of distinct classes) from ontologies.
- Sources:
- *Intra-ontology* (from within input ontologies);
- *Cross-ontology* (from given mappings);
- *Complementary* (from an auxiliary ontology).

Mapping Prediction: Synonym Classifier


- Formulate as a *text classification* task for BERT fine-tuning;
- $L \coloneqq LabelsOf(c); L' \coloneqq LabelsOf(c'); N \coloneqq$ $|L \times L'|$ (# of all label combinations).
- $MappingScore(c,c') \coloneqq$ $\frac{1}{N} \sum_{(l,l') \in L \times L'} SynonymScore(l,l')$

Mapping Prediction: Candidate Selection

- Use sub-word inverted index-based IDF scores to Ablations select K candidates for mapping prediction.
- Outcome: Reduce the *quadratic* search space to linear.
- Better than word-level because: it can capture various word forms without extra processing and deal with *unknown words*.

Mapping Refinement: Extension

Iteratively compute new mappings from highly scored mappings by searching from the respective *parents* and *children* of the matched entities.

Mapping extension (left) and repair (right).

Mapping Refinement: Repair

Compute an approximate *diagnosis* such that a minimal set of *logically inconsistent* mappings is removed.

SANSUNG

Tasks								
	FMA-NCI		FMA-SNOMED			FMA-SNOMED+		
	#Classes: 3696-6488 # #Refs (=): 2686 #Refs (?): 338		Classes: 10157-13412 #Refs (=): 6026 #Refs (?): 2982			An extended task of FMA-SNOMED, where SNOMED is "updated" according to the most recent version.		
		Hyper-params Unsupervised			Semi-supervised			
			90% Test Mappings			70% Test Mappings		
	System	$\{ au, \lambda\}$	Precision	Recall	Macro-F1	Precision	Recall	Macro-F1
ns	io io+ids io+cp io+ids+cp io+ids+cp (ex) io+ids+cp (ex+rp)	(tgt2src, 0.999) (tgt2src, 0.999) (src2tgt, 0.999) (src2tgt, 0.999) (src2tgt, 0.999) (src2tgt, 0.999) (src2tgt, 0.999)	0.705 0.835 0.917 0.910 0.896 0.905	0.240 0.347 0.750 0.758 0.771 0.771	0.359 0.490 0.825 0.827 0.829 0.833	0.649 0.797 0.895 0.887 0.869 0.881	0.239 0.346 0.748 0.755 0.771 0.771	0.350 0.483 0.815 0.816 0.817 0.822
	io+co io+co+ids io+co+cp io+co+ids+cp io+co+ids+cp (ex) io+co+ids+cp (ex+rp)	(src2tgt, 0.997) (src2tgt, 0.999) (src2tgt, 0.999) (src2tgt, 0.999) (src2tgt, 0.999) (src2tgt, 0.999) (src2tgt, 0.999)	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	0.937 0.850 0.880 0.899 0.882 0.892	0.564 0.714 0.779 0.774 0.787 0.786	0.704 0.776 0.826 0.832 0.832 0.832 0.836
es	string-match edit-similarity LogMapLt LogMap AML LogMap-ML*	(combined, 1.000) (combined, 0.920) NA NA NA NA	0.987 0.971 0.965 0.935 0.892 0.944	0.194 0.209 0.206 0.685 0.757 0.205	0.324 0.343 0.339 0.791 0.819 0.337	0.983 0.963 0.956 0.918 0.865 0.928	0.192 0.208 0.204 0.681 0.754 0.208	0.321 0.343 0.336 0.782 0.806 0.340

Results on FMA-SNOMED.

- Ablations of BERTMap settings:
 - Unsupervised settings can already perform rather well if input ontologies have sufficient class labels;
 - Semi-supervised settings are generally better than unsupervised ones.
 - *Complementary corpus* is very useful when input ontologies are deficient in class labels.
- Comparisons to baselines:
 - BERTMap attains the best F1 score on FMA-SNOMED and FMA-SNOMED+, and nearly the best on FMA-NCI.

Conclusion & Future Work

- BERTMap is a novel, *flexible* (unsupervised, semisupervised, and additionally augmented), contextaware (text-level, graph-level, and logic-level), and *scalable* (linear mapping search) OM system.
- Future work is around large-scale benchmarking and a more compact model design.