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Introduction
LMs-as-KBs

To investigate if a language model (LM) contains or can induce
explicit semantics from a knowledge base (KB).

Ontology vs. Triple-based KB

A triple-based KB such as a KG can express “London is the
capital of the UK” as (London, capitalOf,UK)

 An ontology can express “Arthritis is a kind of arthropathy with
an inflammatory morphology” as Arthritis E Arthropathy

dhasMorphology. Inflammatory

 Ontology provides a more formal and precise representation
suitable for conceptual knowledge.

OWL Ontology

 TBox (Terminology), ABox (Assertion), RBox (Relation)

* TBox models concepts mainly with subsumption axioms in the
form of C = D, where C and D are concept expressions:

* Atomic Concept: a named concept, Top (T), or Bottom (L)

* Complex Concept: with at least one logical operators, e.g.,
negation (=), conjunction (), disjunction (U), quantifiers
(3, V), and so on.

* Disjointness axiom in the form of C M D E1 specifies that C
and D cannot share a common instance.

* Entailment: An ontology O entails a subsumption axiom C E D
(written as O = C C D) if C? € D holds in every model 7 of 0.

* Logical entailment w.r.t. an ontology is more strictly defined
than textual entailment based on human beliefs.

OntoLAMA

OntoLAMA is a set of subsumption inference-based probing tasks
and datasets from ontology subsumption axioms involving both
atomic and complex concepts.
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Figure 1: OntoLAMA framework.

Subsumption Inference

The task of subsumption inference (Sl) is defined analogously to
natural language inference (NLI): to classify if a premise entails a
hypothesis.

= CCED.
Negative samples are concept pairs (C,D) that satisfy the
conditions of assumed disjointness:

Positive samples are concept pairs (C, D) with O

* (1) C and D are still satisfiable after adding the disjointness
axiom C M D E1 into 0.

* (2) C and D share no common descendant concept.

Two Sl settings:

* Atomic Sl where both C and D are named concepts.

 Complex SI where either C or D is a complex concept:
* Constructed from the equivalence axioms;

* Negative samples are constructed by randomly alternating
just one entity = very similar to the positive samples.

Concept Verbalisation

* The sampled concept pairs C and D need to be verbalised
before serving as inputs of LMs; denoted as V(C) and V(D).

* Named concepts and properties are verbalised by their labels
defined via rdfs:label.

 Complex concepts are verbalised recursively (see Figure 2).
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Figure 2: Complex concept verbalisation example.

Datasets

* We constructed S| datasets from ontologies of different scales
and domains, including Disease Ontology (DOID), Schema.org,
Food Ontology (FoodOn), Gene Ontology (GO).

e Complex S| datasets are created from FoodOn and GO due to
their abundance of equivalence axioms.

 The biMNLI dataset is created from the MNLI dataset to be
compared with the S| datasets.

Experiments
Prompt-based Inference

* We investigated masked LMs (e.g., BERT, RoBERTa) in this work;
probing such LMs with cloze-style prompts is common practice:

* The verbalised concept pairs are wrapped into a template
with a masked position for an LM to predict.

* The embedding of the predicted token is compared with the
embeddings of pre-defined positive and negative label words.

Results

* Main models: RoBERTa family
* Naive baselines: Majority vote, Word2Vec+Classifier
* S| is more challenging than NLI under the zero-shot setting.

* A significant improvement is observed when a small number
of train/dev samples are provided (K-shot setting).

* Figure 3 visualises the performance of RoBERTa-large.
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Figure 3: Zero-shot and K-shot results for RoBERTa-Large.

Resources

e Datasets can be downloaded from:
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 Huggingface: https://huggingface.co/datasets/krr-oxford/OntoLAMA

e Zenodo: https://doi.org/10.5281/zenodo.6480540

* Code of relevant implementations is available at DeepOnto:

https://github.com/KRR-Oxford/DeepOnto
* |nstructions: https://krr-oxford.github.io/DeepOnto/ontolama/
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