Fine-tuning BERT for Ontology Alignment

Yuan He

Department of Computer Science

University of Oxford

yuan.he@cs.ox.ac.uk

BERT: The Masked Language Model

- Transformer encoder:
 - Text sequences → contextual embeddings.
- Pre-training:
 - Masked language modelling.
 - Next sentence prediction. Roberta
- Fine-tuning:
 - Using the sentence head [CLS].
 - Customised downstream layers.
 - E.g., Linear+Activation

Figure: Illustration of BERT architecture by Delvin et al. (NAACL'19).

Why BERT yields contextual embeddings?

The bank robber was seen fishing on the river bank.

Fine-tuning Approaches

- Sentence head [CLS]:
 - BERT input format: [CLS] text₁ [SEP] text₂ [SEP] ...
 - Embedding of [CLS] fed into downstream layers.
 - Often require \leq 5 epochs for convergence.
- Embedding-based:
 - Contrastive learning.
 - $\uparrow sim(e, e^+)$ and $\downarrow sim(e, e^-)$; E.g., similarities of synonyms/antonyms.

Fine-tuning Approaches

- Prompt-based:
 - Formulate downstream tasks like pre-training.
 - Use prompts as additional contexts.
 - Map the answers to the final outputs.
 - The basis of recent Large Language Models (LLMs).
- More techniques like adapters, distilling, ensemble...

Our Previous Works

- Two works that adopt [CLS] fine-tuning for ontology alignment.
- BERTMap [He et al. AAAI'22] for concept equivalence matching.
- BERTSubs [Chen et al. www Journal'23] for concept subsumption matching.

Figure: Illustration of the BERTMap system by He et al. (AAAI'22).

- Corpus construction:
 - Synonyms are labels from the same concepts.
 - Non-synonyms are labels from different concepts.
 - Hard non-synonyms are labels from sibling concepts.
- Fine-tuning BERT for classification:
 - Input format: [CLS] label₁ [SEP] label₂ [SEP]
 - [CLS] fed into downstream linear followed by a softmax activation.
 - Output a binary score indicating if two phrases are synonymous or not.

- Mapping prediction:
 - Candidate selection using a sub-word inverted index.
 - Compute a mapping score based on aggregated synonym scores.
- Mapping extension:
 - Locality principle: parents/children of aligned concepts could match.
 - Iteratively search new mappings with scores ≥ threshold.
- Mapping repair:
 - Remove a minimal set of mappings that cause inconsistency.

Highlights

- Support unsupervised, semi-supervised, and data-augmented modes.
- Simple and effective candidate selection with a high recall.
- Mostly improving **lexical** matching, but also consider **structural** (extension) and **logical** (repair) contexts.

BERTSubs

Figure: Illustration of the BERTSubs system by Chen et al. (WWWJ'23).

BERTSubs

- Corpus construction:
 - Positive samples are (C, C^+) s from asserted subsumptions.
 - Negative samples are (C, C^-) s from non-entailed subsumptions.

- Input template:
 - Isolated concept: only use concept labels.
 - Path context: concatenate ancestors as context.
 - Breadth-first context: concatenate neighbours (BFS) as context.

BERTSubs

Highlights

- Support both intra-ontology (completion) and inter-ontology (alignment) subsumption prediction.
- Explore different kinds of structural contexts.
- Consider not only named concepts but also existential restrictions.

Note

• Subsumption matching is usually evaluated with ranking-based metrics (e.g., Hits@K, MRR); search is not implemented for BERTSubs.

More Related Works

• **Bio-ML Track of the OAEI** [He et al. ISWC'22]: Five OM pairs for equivalence and subsumption matching.

• OntoLAMA [He et al. ACL'23 Findings]: Prompt-based subsumption inference for LM probing.

• **LLMap** [He et al. ISWC'23 Posters&Demos]: Preliminary investigation of applying LLMs on OM, also contributing to the **Bio-LLM sub-track** of Bio-ML.

THANKS!

Check everything mentioned in our Python package **DeepOnto**:

https://krr-oxford.github.io/DeepOnto/