
Ontology Matching with
Pre-trained Language Model

Yuan He

St Hugh’s College

University of Oxford

Supervisors: Prof. Ian Horrocks, Prof. Bernardo Cuenca Grau

Transfer of Status Report
Doctor of Philosophy in Computer Science

Michaelmas 2021

Contents

1 Introduction 1

2 Background 4

2.1 Ontology Alignment . 4

2.2 BERT: Pre-training and Fine-tuning 6

2.3 Related Work . 8

2.3.1 Traditional OM Systems . 8

2.3.1.1 LogMap . 8

2.3.1.2 AgreementMakerLight 8

2.3.2 Machine Learning-based OM Systems 9

2.3.2.1 Supervised OM Approaches 9

2.3.2.2 Unsupervised OM Approaches 10

2.3.3 Preliminary OM Work on Using BERT 10

2.3.4 Entity Alignment in Knowledge Graphs 11

2.3.5 Ontology Blocking . 12

3 BERTMap 14

3.1 Corpus Construction and BERT Fine-tuning 14

3.1.1 Ontology Corpora . 14

3.1.2 Fine-tuning . 16

3.2 Mapping Prediction . 16

3.2.1 Candidate Selection . 16

3.2.2 Mapping Score Computation 17

3.3 Mapping Refinement . 18

3.3.1 Mapping Extension . 18

3.3.2 Mapping Repair . 19

i

4 Evaluation 21

4.1 Experiment Settings . 21

4.1.1 Datasets and Tasks . 21

4.1.2 Evaluation Metrics . 22

4.1.3 BERTMap Settings . 23

4.1.4 Baselines . 24

4.2 Results . 25

4.3 Mapping Thresholds on Validation Set 29

5 Conclusions & Discussion 33

5.1 Principles of OM Systems . 33

5.2 Is Mapping Repair Necessary? . 34

5.3 Qualitative Analysis of BERTMap . 35

6 Future Research Plan 38

6.1 BERTMap Extension . 39

6.1.1 Transitive Property . 39

6.1.2 Negative Sampling . 39

6.1.3 Class Subsumption . 40

6.1.4 Prompt Learning . 40

6.2 OM Evaluation . 43

Bibliography 44

ii

List of Figures

1.1 Illustration of BERTMap system. 3

2.1 Illustration of BERT pre-training (left) and fine-tuning (right). 6

4.1 Validation results of BERTMap (io+ co+ ids) on the FMA-SNOMED+ task with

mapping score threshold λ ranging from 0 to 1. The left and right plots correspond

to τ = combined and τ = src2tgt, respectively. 28

4.2 Precision, Recall and Macro-F1 of BERTMap on the validation sets of the FMA-

NCI task as the mapping score threshold ranges from 0 to 1 (excluded 1 because it

represents the sting-match result). The maximum F1 is indicated by a red vertical

line. 30

4.3 Precision, Recall and Macro-F1 of BERTMap on the validation sets of the FMA-

SNOMED task as the mapping score threshold ranges from 0 to 1 (excluded 1

because it represents the sting-match result). The maximum F1 is indicated by a

red vertical line. 31

4.4 Precision, Recall and Macro-F1 of BERTMap on the validation sets of the FMA-

SNOMED+ task as the mapping score threshold ranges from 0 to 1 (excluded 1

because it represents the sting-match result). The maximum F1 is indicated by a

red vertical line. 32

5.1 Logical inconsistency example after integrating FMA and NCI ontologies through

three mappings (indicated by green lines) between the classes named “Visceral

Pleura”, “Lung” and “Thoracic Cavity” in both ontologies [14]. 34

6.1 Illustration of Mapping Prediction of current BERTMap. 41

6.2 Illustration of Prompt Learning Using BERT Ensembling. 42

iii

Chapter 1

Introduction

Ontology alignment (a.k.a. ontology matching (OM)) aims at matching semanti-

cally related entities from different ontologies. A relationship (usually equivalence or

subsumption) between two matched entities is known as a mapping. OM plays an

important role in knowledge engineering, as a key technique for ontology integration

and quality assurance [9, 29]. The independent development of ontologies often re-

sults in heterogeneous knowledge representations with different categorizations and

naming schemes. For example, the class named “muscle layer” in the SNOMED

Clinical Terms ontology is named “muscularis propria” in the Foundational Model

of Anatomy (FMA) ontology. Moreover, real-world ontologies often contain a large

number of classes, which not only causes scalability issues, but also makes it harder

to distinguish classes with similar names and/or contexts but representing different

objects.

Traditional OM solutions typically use lexical matching as their basis and com-

bine it with structural matching and logic-based mapping repair. This has led to

several classic systems such as LogMap [13] and AgreementMakerLight (AML) [8]

which still demonstrate the state-of-the-art performance on alignment tasks. How-

ever, their lexical matching part only considers texts’ surface form such as overlapped

sub-strings, and cannot capture the word semantics. Recently, machine learning

has been proposed as a replacement for lexical and structural matching; for exam-

ple, DeepAlignment [16] and OntoEmma [32] utilize word embeddings to represent

classes and compute two classes’ similarity according to their word vectors’ Euclidean

distance. Nevertheless, these methods adopt either traditional non-contextual word

embedding models such as Word2Vec [21], which only learns a global (context-free)

embedding for each word, or use complex feature engineering which is ad-hoc and

relies on a large number of annotated samples for training. In contrast, pre-trained

transformer-based language representation models such as BERT [7] can learn robust

1

contextual word embeddings, and usually require only moderate training resources for

fine-tuning. Such models are typically pre-trained on gigantic corpora to learn gen-

eral background knowledge, and then released to the community such that people can

download the model and fine-tune it on customized downstream tasks. The process

of adjusting the parameters of the pre-trained model according to the downstream

objective function is referred to as fine-tuning, which has been proven rather effective

in many Natural Language Processing (NLP) tasks, but has not yet been sufficiently

investigated in OM.

In this report, we propose BERTMap, a novel ontology alignment system that ex-

ploits BERT fine-tuning for mapping prediction and utilizes the graphical and logical

information of ontologies for mapping refinement. As shown in Figure 1.1, BERTMap

includes the following main steps:

• Corpus Construction, where synonym and non-synonym pairs from various

ontology-related sources are extracted;

• Fine-tuning, where a suitable pre-trained BERT model is selected and fine-

tuned on the corpora constructed in the previous step;

• Mapping Prediction, where mapping candidates are first selected based on

sub-word inverted indices and then predicted by the fine-tuned BERT classifier;

• Mapping Refinement, where additional mappings are recalled from neigh-

bouring classes of highly scored mappings, and some mappings that lead to

logical inconsistency are deleted for higher precision.

We evaluate BERTMap1 on the OAEI Large BioMed Track2 (LargeBio), which

consists of three well-known biomedical ontologies (but of old versions), namely the

Foundational Model of Anatomy (FMA), SNOMED CT, and the National Can-

cer Institute Thesaurus (NCI). These ontologies are abundant in concepts and se-

mantics. The ground truth mappings are constructed based on UMLS Metathe-

saurus3, which is currently the most comprehensive crowd-source effort for integrat-

ing independently-developed medical thesauri and ontologies. We specifically choose

the FMA-SNOMED and FMA-NCI tasks and conduct in-depth ablation study to

examine BERTMap and other benchmarks. We also consider an extended task of

FMA-SNOMED (denoted as FMA-SNOMED+) where the more complete labels from

1Our source codes and data are available at: https://github.com/KRR-Oxford/BERTMap.
2http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
3https://www.nlm.nih.gov/research/umls/index.html

2

https://github.com/KRR-Oxford/BERTMap
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
https://www.nlm.nih.gov/research/umls/index.html

if matched

Sub-word Inverted Indices

String-match Module

Prediction Inputs
Create Indices

BERT Classifier

Prediction

Mapping Extension

Mapping Repair

Refinement

Corpora

Source Ontology

Target Ontology

Known Mappings

Complementary Sources

Intra-ontology Corpus

Cross-ontology Corpus

Complementary Corpus

Fine-tuning
Inputs

if no matched labels

candidate selection

Scored Mappings

Output Mappings

Figure 1.1: Illustration of BERTMap system.

the up-to-date SNOMED ontology are reintroduced to the LargeBio SNOMED. We

will explain the reason for setting this additional task in the experiment section (see

Chapter 4). Our results on these biomedical ontology alignment tasks demonstrate

that BERTMap can often outperform the state-of-the-art systems LogMap and AML.

The outline of the rest of the report is presented below:

• In Chapter 2, we will introduce the task definition of OM and some relevant

concepts, background knowledge concerning BERT, and literature related to

OM.

• In Chapter 3, we will explain BERTMap in full technical details.

• In Chapter 4, we will illustrate how we evaluate BERTMap and other base-

line systems (including the state-of-the-art ones) on three biomedical ontology

alignment tasks.

• In Chapter 5, we will discuss principles of OM systems, whether or not map-

ping repair is necessary, and conclude our work with a qualitative analysis of

BERTMap from several aspects.

• In Chapter 6, we will discuss our future work as a series of projects towards

data integration using OM-PLM (Ontology Matching with Pre-trained Lan-

guage Modelling).

3

Chapter 2

Background

2.1 Ontology Alignment

An ontology is typically defined as an explicit specification of a conceptualization.

Its main components are entities (including classes, instances and properties), and

axioms that can express relationships between entities. Ontology alignment involves

identifying equivalence, subsumption or other more complex relationships between

cross-ontology pairs of entities. In this work, we focus on identifying equivalence

between classes. Given a pair of ontologies, O and O′, whose named class sets are C

and C ′, respectively, we aim to first generate a set of scored mappings of the form

(c ∈ C, c′ ∈ C ′, P (c ≡ c′)), where P (c ≡ c′) ∈ [0, 1] is a score indicating the degree to

which c and c′ are equivalent (a.k.a., mapping value); we then extend and repair the

scored mappings to output determined mappings.

To be more specific, we intend to first establish a mapping scoring function:

smap : C × C ′ → [0, 1]

that takes two classes as input, and computes the equivalence score between them.

This function can be constructed either using heuristics and rules or can be learnt

through optimizing a customized objective function (i.e., backpropagation [28]). We

also need a candidate selection function, defined as:

fsel : C × P(C ′)→ P(C ′)

where P(·) refers to the power set1. Note that the simplest method of candidate

selection is to traverse the whole target class space, resulting in a quadratic time

complexity. In BERTMap, we propose a candidate selection algorithm that requires

1The set of all the subsets.

4

only linear time. The process of selecting target candidate classes and predict a

mapping for each source class is referred to as mapping prediction.

Moreover, as the last step of the sequential procedure, we also consider mapping

refinement, which consists of mapping extension and mapping repair. The extension

function aims to discover more mappings from existing (predicted) mappings by uti-

lizing the graphical information of input ontologies. In this work, we consider the

following principle:

Principle 2.1.1 (Locality Principle). Suppose there exists a mapping between c ∈
C and c′ ∈ C ′, classes that are semantically related to c are likely to be mapped to

those semantically related to c′.

For example, if c is equivalent to c′ through a correct mapping, their parents and

children are likely to be matched, respectively. Details of how to apply the locality

principle to establish the extension module will be presented in Chapter 3.

Mapping repair aims to detect and delete mappings that will cause logical errors

(incoherence) after integrating two ontologies. We borrow the definition of mapping

repair from [15]:

Definition 2.1.2 (Repair). If a set of mappings M between ontologies O and O′

leads to logical incoherence, then R ⊆ M is a mapping repair if M\R is coherent

w.r.t. O and O′.

A trivial example of mapping repair is to let R =M such that the mapping set

becomes empty. But what we really need is to remove a minimal number of mappings

to achieve coherence. Such “perfect repair”, a.k.a. diagnosis, is defined as:

Definition 2.1.3 (Diagnosis). If R is a repair for a set of mappings M w.r.t.

ontologies O and O′, then R is a diagnosis if R′ ⊂ R is not a repair for M w.r.t. O

and O′.

Nevertheless, computing a diagnosis confronts the scalability issue when the num-

ber of unsatisfiability increases. In practice, mapping repair systems often approxi-

mate the diagnosis using partial reasoning techniques. Such approximation does not

guarantee to remove all the incoherent mappings but to a large extent preserve most

of the coherent mappings. In BERTMap, we utilize the mapping repair tool developed

in [15] as an optional step of mapping refinement.

5

NSP Mask LM Mask LM

Text Pair Classification Layer

Output probability for predicting Text A and B as synonymous

Pretraining Fine-tuning (Binary Classification)

...

...

Masked & Tokenized
Sentence A

...

... ...

... ...

... ...

...
... ...[CLS] [SEP]

Masked & Tokenized
Sentence B

Embedding (Token + Segment + Position)

Tokenized Sentence A

... ...

... ...[CLS] [SEP]

Tokenized Sentence B

Embedding (Token + Segment + Position)

Weights initialized from Pretrained BERT

Figure 2.1: Illustration of BERT pre-training (left) and fine-tuning (right).

2.2 BERT: Pre-training and Fine-tuning

BERT is a contextual language representation model built on bidirectional trans-

former encoders [31]. Its framework involves pre-training and fine-tuning. In pre-

training (see Figure 2.1, left), the input is a sequence composed of a special token

[CLS], tokens of one sentence A, a special token [SEP], and tokens of another sentence

B that follows A in the corpus. Each token’s initial embedding encodes its content,

its position in the sequence, and the sentence it belongs to (A or B). The model

has multiple successive layers of an identical architecture. Its main component is the

multi-head self-attention block which computes a contextual hidden representation of

each token by considering the output of the whole sequence from the previous layer.

The tokens’ embeddings from the last layer can be used as the input of a downstream

task. We present the outputs at layer l in the following equation:

fbert(x, l) = (v
(l)
CLS,v

(l)
1 , ...,v

(l)
N ,v

(l)
SEP ,v

′(l)
1 , ...,v

′(l)
N ′) ∈ R(N+N ′+2)×d (2.1)

where x is the initial embedding of the input sequence, (v
(l)
i)i=1,...N are computed

embeddings of the ith token in the input sentence A at layer l, (v
′(l)
i)j=1,...N ′ are

computed embeddings of the jth token in the input sentence B at layer l, v
(l)
CLS and

v
(l)
SEP are embeddings of the [CLS] and [SEP] tokens at layer l, respectively. Note

that each token embedding is of the dimension d (e.g. d = 768 for the bert-base2

2See a list of available pre-trained BERT models at: https://huggingface.co/transformers/
pretrained_models.html.

6

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html

model).

Pre-training is conducted by minimizing losses on two tasks: Masked Language

Modelling, which predicts a part of tokens that are randomly masked, and Next

Sentence Prediction, which predicts whether sentence B follows A. In contrast to the

traditional non-contextual word embedding methods such as Word2Vec [21], which

assign each token in the vocabulary only one embedding, BERT distinguishes different

occurrences of the same token. For instance, given a sentence “the bank robber was

seen on the river bank”, BERT computes different embeddings for the two occurrences

of “bank”, while a non-contextual model yields a unified embedding that is biased

towards the most frequent meaning (probably the money bank) in the corpus.

To directly use the contextual embeddings generated by the pre-trained BERT,

the author suggested to either concatenate or average the last-few-layer outputs.

Nevertheless, it argues in [36] that we should use the second-to-last layer outputs

because they reach the sweet point between learning and generalization. Details of

BERT probing, and even the whole branch of studying how BERT is working and

what BERT can do (referred to as “BERTology”) can be seen in [27] as a good starting

point.

In fine-tuning, pre-trained BERT is attached to customized downstream layers

and takes as input either one sentence or two sentences according to specific tasks.

We present some examples as follows:

(i) In sentiment analysis, it takes one sentence as input and outputs the category

of sentiment.

(ii) In paraphrasing task, it takes two sentences as input and tries to learn seman-

tic similarity between the input sentence pair, and outputs the corresponding

probability score.

(iii) In question answering, it takes two sentences as input but one states the ques-

tion and the other represents the context of the question. The output can be,

for example, a simple answer with constrained patterns, or a complex answer

associated to some logical representation graph.

Fine-tuning typically necessitates only a few epochs and a moderate number of

samples for training. In the right part of Figure 2.1, we present an example of fine-

tuning on a binary classification task where it takes a sentence pair as input, and

outputs the probability that the input sentences are synonymous.

7

2.3 Related Work

2.3.1 Traditional OM Systems

Classic OM systems are often based on lexical matching, structure matching and

logical inference [25]. We exemplify two traditional OM systems, LogMap3 [13] and

AML [8] with the state-of-the-art performance.

2.3.1.1 LogMap

The first step of LogMap pipeline is to construct lexical indices for input ontolo-

gies with word form variations considered, and compute their intersection, i.e., to

check if any of the lexical entries contain the same strings. Classes that are values

of the overlapped entries are then matched and each such cross-ontology class pair

is deemed as an anchor mapping, with a confidence score that also considers neigh-

bourhood similarity. Based on these anchor mappings, LogMap alternates between

mapping extension (discovery) that utilizes structural indexation, and mapping re-

pair that utilizes logical reasoning to expand the mapping set while preserving logical

consistency. LogMap has several variants including:

(i) LogMapLt, which is the lexical matching part of LogMap;

(ii) LogMapBio, which uses biomedical background knowledge to enrich its indexa-

tion.

(iii) LogMap-ML [6], which is a machine learning extension of LogMap where the

anchor mappings are used for downstream distant supervision of a Siamese

network, together with an ontology embedding model, OWL2Vec* [5].

These systems have been consistently developed over the past decade, and in partic-

ular, participate the OAEI tracks for many years with leading performance, so they

are naturally strong baselines considered in our evaluation.

2.3.1.2 AgreementMakerLight

Unlike LogMap, AgreementMakerLight (AML) is not an iterative process; instead,

it focuses more on mixed matching strategies. AML also adopts a lexical matcher

similar to LogMap, but the matching module is further enhanced by three other

matchers including:

3LogMap has recently won the ISWC 2021 Ten-Year-Reward, see https://twitter.com/iswc_

conf/status/1452974140068188167.

8

https://twitter.com/iswc_conf/status/1452974140068188167
https://twitter.com/iswc_conf/status/1452974140068188167

(i) Mediating Matcher, which utilizes a meditating ontology as an intermedidate

between the input ontologies to build “bridge” alignments;

(ii) Word Matcher, which computes class simlarities based on several string simlarity-

based algorithms;

(iii) Parametric String Matcher, which serves as the secondary matcher of AML

(only used in extension mode) for non-literal comparisons.

AML also supports mapping extension and repair, but they are not as important as

in LogMap.

Although such system architectures, which integrate structure matching and logic-

based repair, have proven quite effective, their lexical matching, such as the lexical

index and edit distance metrics, only utilizes the surface form of texts and ignores

word semantics. Our proposed OM solution, BERTMap, employs a similar archi-

tecture, but utilizes fine-tuned BERT so that textual semantics and contexts are

considered in mapping computation.

2.3.2 Machine Learning-based OM Systems

The machine learning-based OM systems can be categorized as supervised or unsuper-

vised, where the former requires annotated mappings for training but the latter does

not. In this section, we illustrate OM solutions under these two different settings.

2.3.2.1 Supervised OM Approaches

A fundamental challenge of apply supervised learning scheme in OM is the extreme

imbalance between positive and negative samples, i.e., there are several orders of

magnitude less correct mappings than incorrect ones (which can be easily extracted

from randomly aligned class pairs). To address this, the supervised OM solutions

often rely on silver data (automatically annotated by some heuristics rather than

human-annotated) and/or complex feature engineering.

OntoEmma [32] is an typical example of supervised OM solution that relies on both

hand-crafted and automatically learnt features. It attempts to learn class representa-

tions with textual context features considered through a highly complex network that

uses character-level CNN and Word2Vec embeddings to initialize text tokens used to

represent a class and further improve the embeddings through bi-directional LSTMs;

the learnt class embeddings are then sent to a Siamese network for computing a simi-

larity score. Note that the text features consider “contexts” which are sentences that

9

mention the associated concept in some external materials. Frustratingly, the model

performance is much worse than AML on a LargeBio task, and most of the gains are

owing to hand-crafted features rather than the learnt complex features.

Other examples like [24] uses hand-crafted features such as string similarities to-

gether with Word2Vec; LogMap-ML [6] utilizes path contexts and ontology embed-

dings from OWL2Vec* [5]; VeeAlign [10] proposes “dual attention” (path and node

level) in its model to enhance the class embeddings.

However, all of these approaches depend on complicated feature engineering and/or

complex neural network architectures. More importantly, they need a significant num-

ber of high quality labeled mappings for training which are often not available and

costly to manually annotate. Although some solutions such as distant supervision [6]

and sample transfer [24] have been investigated, the sample quality often varies and

limits their performance.

2.3.2.2 Unsupervised OM Approaches

Unsupervised learning approaches such as ERSOM [35] and DeepAlignment [16] have

also been studied in OM. ERSOM attempts to use an auto-encoder (a network that

learns how to map the input to itself) to learn class embeddings through a combination

of entity descriptions; while DeepAlignment adopts counter-fitting [22], a refinement

technique that utilizes synonyms and non-synonyms to adjust word embeddings. Both

of these approaches try to encode a class without requiring annotaed mappings, but

such representations are relatively naive because they do not take textual contexts

into consideration.

We will soon see our proposed model, BERTMap, is mainly an unsupervised model

that requires no annotated data, but can be further enhanced by a small portion of

known mappings under the semi-supervised setting. BERTMap is better than the

machine learning-based OM solutions discussed above because of its flexible learning

pipeline and its incorporation of both text-level and ontology-level contexts.

2.3.3 Preliminary OM Work on Using BERT

Neutel and Boer [23] have already presented a preliminary investigation of the use of

BERT in OM. Their work considered two relatively naive approaches:

(i) Encoding classes with pre-trained BERT’s token embeddings and calculating

their cosine similarity;

10

(ii) Fine-tuning class embeddings with the SentenceBERT [26] architecture, which

relies on a large number of given mappings.

We have implemented (i) and found it to perform much worse than string-matching

on our tasks; moreover, according to their paper, method (ii) has much lower mean

reciprocal rank score than the non-contextual word embedding model, FastText [2],

although it has higher coverage. Furthermore, the data used for evaluation have no

gold standards, and thus the conventional metrics, Precision, Recall and F1, are not

computed.

2.3.4 Entity Alignment in Knowledge Graphs

A knowledge graph (KG) typically relies on an ontology as a schema (metadata)

that defines the semantics of the dataset expressed by KG. It can be deemed as a

collection of entities (nodes) and relationships (labeled edges) between them. The

entity alignment or matching (EM) task of KGs often refers to identifying entity

equivalence between different KGs because a KG alone has no rich semantics to infer

complicated relationships as in OM. However, both KGs and ontologies are graph-like

objects, implying that the graph embedding-based approaches used in EM of KGs

are likely to be applied (with adaption) to OM as well.

The traditional EM approaches rely on the completeness of ontology semantics

because they either utilize equivalence reasoning or similarity computation of sym-

bolic features (e.g., string similarity between entity labels) [30]. Therefore, in the

scenario where the to-be-aligned KGs are accompanied by their respective ontologies,

traditional OM systems like LogMap and AML can be (almost) directly applied to

the task.

The embedding-based EM models adopt graph embeddings and/or word embed-

dings to represent entities and the relationships between them. The translational

models (e.g., TransE [3]) are conventional approaches for learning graph embeddings

with an objective function aiming to minimize some distance metric (e.g., Euclidean

distance in R2) between equivalent entities. More recently, graph neural networks

(GNNs) are proposed to learn entity embeddings to incorporate more features such

as multi-model data and taxonomies, which have been proven beneficial [4]; word

embedding models such as Word2Vec [21] and FastText [2] are also used for encoding

the literal information. Nevertheless, compared to EM of KGs, OM is often more

abundant in different types of knowledge (textual, structural, and logical), and thus

11

we can derive more comprehensive entity embeddings that incorporate all sorts of

information.

Moreover, we observe that pre-trained language model has also been applied to

EM of KGs in a very recent publication that proposes a model named DITTO [17].

To the best of our knowledge, DITTO is the first system that applies BERT to EM

of KGs with promising results; and our work, BERTMap, is the first successful OM

counterpart. These certainly shed light for future research of entity alignment in both

KGs and ontologies with pre-trained language modelling.

2.3.5 Ontology Blocking

Ontology blocking refers to the technique of dividing an ontology alignment task into

smaller sub-tasks of reduced complexity, while keeping a high coverage of ground

truth mappings. The total number of classes involved in these sub-tasks is likely to

be much smaller than the number in the original task because the matched classes are

often the minority. For example, the average number of classes in the OAEI LargeBio

ontologies (FMA, NCI, and SNOMED) is more than 100K, while the number of

reference mappings is on average ≈ 10K. To compare more systems (especially the

machine learning-based approaches) with less worry of time consumption, dividing

an OM task using the ontology blocking (or portioning) technique is needed.

In [12], the authors proposed a blocking approach based on lexical index and se-

mantic embeddings. The lexical index can be seen as a dictionary that has word

tokens as entries (or keys) and classes that contain the corresponding tokens in their

labels are the values. Classes that can be accessed from the same entry are likely

to be matched because their names or aliases have some similarities. The semantic

embedding is computed for each key-value pair of the lexical index by concatenating

the word embeddings of the tokens in the key and the value, respectively. The seman-

tically closed entries are thus merged into a cluster. In this way, the input ontologies

are trimmed to classes involved in the semantic clusters and render a reduced OM

task. Results of this work demonstrate that a LargeBio task can be reduced as low

as 5% of the original size using the proposed method, while the coverage of mappings

is larger than 90%.

Nevertheless, none of the existing ontology blocking approaches take the word-

level contexts into consideration. For instance, the lexical index-based technique

mentioned in the previous paragraph assumes that all the aligned classes share some

word tokens in their labels, but the word meanings vary from its contexts. Similar to

what have been employed in BERTMap, we suggest two possible improvements here:

12

(i) Using sub-word tokens as the entries rather than the full word tokens;

(ii) Adopting contextual token embeddings in the semantic embeddings rather than

the non-contextual ones.

The first suggestion will lead to fewer keys but more classes in the values because we

ease the restriction from shared word tokens to shared sub-word tokens; the second

suggestion will yield semantic clusters that consider word-level contexts. As a result,

we can hopefully cover more mappings in the reduced OM task.

13

Chapter 3

BERTMap

Existing machine learning-based ontology alignment systems often adopt complicated

feature engineering or traditional non-contextual word embeddings. However, they

are often outrun by the rule-based systems despite the model complexity. Moreover,

applying machine learning to OM confronts a fundamental challenge: the number

of correct mappings is typically several orders smaller than the wrong mappings.

Such extreme imbalance between positive and negative samples makes the supervised

learning scheme an impractical choice. So instead of directly learning from training

mappings, we should consider an unsupervised or semi-supervised learning scheme

with reasonable heuristics such that we can sufficiently exploit the information of

ontologies. In this report, we propose BERTMap, a novel ontology alignment system

that uses the well-known contextual embedding or language representation model,

BERT, to learn text semantics implied by ontologies to predict mappings, and further

refine the outputs using the graphical and logical information of ontologies. The

workflow of BERTMap is shown in Figure 1.1. In the following sections of this chapter,

we describe the technical details of each step.

3.1 Corpus Construction and BERT Fine-tuning

3.1.1 Ontology Corpora

In real-world ontologies, a named class often has multiple labels defined by annota-

tion properties such as rdfs:label. They act as the class’s aliases. For convenience, we

denote a label after preprocessing1 by ω, and denote the set of all the preprocessed

labels of a class c as Ω(c). Labels of the same class or from semantically equiva-

lent classes are intuitively synonymous in the domain of the input ontologies; labels

1This includes lowercasing and underscore symbol removing.

14

from semantically distinct classes can be regarded as non-synonymous. The corpora

for BERT fine-tuning are composed of pairs of such synonymous labels (i.e., “syn-

onyms”) and pairs of such non-synonymous labels (i.e.,“non-synonyms”). According

to the source, the corpora are divided into three categories as follows.

Intra-ontology corpus. For each named class c in an input ontology we derive all

its synonyms, which are pairs (ω1, ω2) with ω1, ω2 ∈ Ω(c), and the special cases where

ω1 = ω2 are referred to as identity synonyms. We consider two types of non-synonyms:

(i) soft non-synonyms which are labels from two random classes; and (ii) hard non-

synonyms which are labels from logically disjoint classes. Since class disjointness is

often not defined in an ontology, we simply assume that sibling classes (i.e., classes

that share a common superclass) are disjoint. In fact, this is a naive solution to infer

disjointness from the structure of the input ontology.

Cross-ontology corpus. The lack of annotated mappings makes it unfeasible to

apply supervised learning on ontology alignment. However, it is reasonable to sup-

port a semi-supervised setting where a small portion of mappings are given (e.g.,

annotated by human experts) and we can extract synonyms from these mappings.

Given a mapping composed of two named classes c and c′ we extract all synonyms

(ω, ω′) where (ω, ω′) ∈ Ω(c) × Ω(c′) (× refers to the Cartesian Product). We also

extract non-synonyms from pairs of randomly aligned classes. Hard non-synonyms

are not available here because mappings do not involve disjointness. Also, Identity

synonyms here because they have been included in the intra-ontology corpus.

Complementary corpus. Besides the input ontologies, we can optionally utilize

auxiliary ontologies for additional synonyms and non-synonyms. They are extracted

in the same way as the intra-ontology corpus but from an auxiliary ontology. To

reduce data noise and limit the corpus size, we consider auxiliary ontologies of the

same domain and only utilize named classes that have shared labels with some class

of the input ontologies.

The intra-ontology corpus, cross-ontology corpus and complementary corpus are

denoted as io, co and cp, respectively. Note that io is essential, while co and cp

are optional. The identity synonyms are denoted as ids. For convenience, we use

+ to denote the combination of different corpus/synonyms; for example, io + ids

refers to the intra-ontology corpus with identity synonyms considered, and io+ co+

15

cp refers to including all three corpora without identity synonyms. To learn the

symmetrical property, we also append reversed synonyms, i.e., if (ω1, ω2) is in the

synonym set, (ω2, ω1) is added. Since some non-synonyms are extracted randomly,

they can occasionally also appear in the synonym set; in this case, we delete the

corresponding non-synonyms.

3.1.2 Fine-tuning

Given sets of synonyms and non-synonyms as positive and negative samples, respec-

tively, we fine-tune a pre-trained BERT along with a downstream binary classifier on

the cross-entropy loss. The inputs of BERT are the tokenized label pairs with the

maximum length set to 128. The classifier consists of a linear layer (with dropout)

that takes as input the embedding of [cls] token from BERT’s last-layer outputs,

and transforms it into a 2-dimensional vector before applying the output softmax

layer. The optimization is done using the Adam algorithm [20]. The final output is

of the form 〈1− y, y〉, where y ∈ [0, 1] is the score that indicates the degree that the

input label pairs are synonymous.

3.2 Mapping Prediction

To compute a matched class for each class c ∈ C, a naive solution is to search for

arg maxc′∈C′ P (c ≡ c′) by traversal. Computing mappings in this way has a time

complexity of O(n2), which is impractical for matching large ontologies. To reduce

the search space, BERTMap first selects a set of candidates of matched classes using

sub-word inverted indices, and then scores each potential mapping using a mixed

strategy that combines the string-match module and the fine-tuned BERT classifier.

3.2.1 Candidate Selection

The assumption of our candidate selection is that matched classes are likely to have

labels with overlapped sub-tokens. Previous works typically adopt word-level inverted

index with additional text processing such as stemming and dictionary consulting

[13, 32]. In contrast, BERTMap exploits a sub-word inverted index which has the

following advantages:

(i) it captures various word forms without extra processing. For instance, the

words “tokenization” and “tokenizing” will be transformed to “token” and the

corresponding suffixes, namely “##ization” and “##izing”.

16

(ii) it parses unknown words into consecutive known sub-words instead of simply

treating them as one special token. For example, suppose “H1N1” (a flu name)

is a new word, sub-word tokenization will transform it to the sequence: “H”,

“##1”, “##N”, “##1”, whereas the traditional word-level method will treat

it the same as other unknown words using the same symbol, <unk>.

We build sub-word inverted indices based on BERT’s inherent WordPiece tok-

enizer [34], which is trained by an incremental procedure that merges characters (from

the corpus) into most likely sub-words at each iteration. We opt to use the built-in

sub-word tokenizer rather than re-train it on our corpora because it has already been

fitted to an enormous corpus (with 3.3 billion words) that covers various topics [7],

and in this context we consider generality to be preferable to task specificity.

We construct2 indices I and I ′ for the two input ontologies O and O′, respectively.

Each entry of an index is a sub-word, and its values are classes that have at least one

label containing this sub-word after tokenization. A query of source (resp. target)

classes that contain a token t is denoted as I[t] (resp. I ′[t]). The function that takes

a class as input and returns all the sub-word tokens of this class’s labels is denoted

as T (·). Given a source class c, we search from C ′ the target candidate classes as

follows: we first select target classes that share at least one sub-word token with c,

i.e.,
⋃

t∈T (c) I
′[t], and then rank them according to a scoring metric based on inverted

document frequency (idf):

Sselect(c, c
′) =

∑
t∈T (c)

idf(t) =
∑
t∈T (c)

log10

|C ′|
|I ′[t]|

where | · | denotes set cardinality. Finally, we choose the top k scored target classes

for c to form potential mappings of which the scores will be computed. As a result,

we reduce the quadratic time complexity to O(kn) where k << n is the cut-off of

candidate selection.

3.2.2 Mapping Score Computation

For a matched class candidate c′ of the source class c, BERTMap uses string matching

and the fine-tuned BERT classifier to calculate the mapping score between them as

follows:

Smap(c, c
′) =

{
1.0 if Ω(c)

⋂
Ω(c′) 6= ∅

Sbert(Ω(c),Ω(c′)) otherwise

2Index construction is linear w.r.t. the number of sub-words.

17

where Ω(c)
⋂

Ω(c′) 6= ∅ means c and c′ have at least one exactly matched label.

Sbert(·, ·) denotes the average of the synonym scores of all the label pairs (i.e., (ω, ω′) ∈
Ω(c)×Ω(c′)), which are predicted by the BERT classifier. The purpose of the string-

matching is to save computation by avoiding unnecessary use of the BERT classifier

on “easy” mappings. BERTMap finally returns the mapping for c by selecting the top

scored candidate c′ = arg maxSmap(c, c
′). With the above steps, we can optionally

generate three sets of scored mappings:

(i) src2tgt by looking for a matched target class c′ ∈ C ′ for each source class

c ∈ C;

(ii) tgt2src by looking for a matched source class c ∈ C for each target class c′ ∈ C ′;

(iii) combined by merging src2tgt and tgt2src with duplicates removed.

We denote the hyperparameters as τ and λ where τ refers to the set type (src2tgt,

tgt2src or combined) of scored mappings and λ ∈ [0, 1] refers to the mapping score

threshold.

3.3 Mapping Refinement

With the predicted mappings and their scores, BERTMap further extends and repairs

the mappings by utilizing the graphical and logical information.

3.3.1 Mapping Extension

Recall from Section 2.1 where we state the locality principle that if a source class c and

a target class c′ are matched, their semantically related classes (such as parents and

children) are likely to be matched. BERTMap utilizes this principle to discover new

mappings from existing highly scored mappings with an iterative mapping extension

algorithm (see Algorithm 1). The algorithm starts by initializing a frontier set with

the high confidence mappings that have been predicted in the previous step. Then,

for each mapping (c, c′) in the frontier, it computes the Cartesian Products for their

parents (super-classes) and children (sub-classes), respectively (Line 8). For each

potential matched class pair in these two products, a new mapping is preserved (Line

10-12) only when:

(i) the mapping score ≥ the extension threshold κ;

(ii) the mapping is not previously seen (in M and Mex).

18

Algorithm 1 Iterative Mapping Extension

Input: High confidence mapping set, M
Parameter: Extension threshold, κ
Output: Extended mapping set, Mex

1: Initialize the frontier: Mfr ←M
2: Initialize the extended mapping set: Mex ← {}
3: Let Sup(·) be the function that returns superclasses
4: Let Sub(·) be the function that returns subclasses
5: whileMfr is not empty do
6: Initialize an empty new extension set: Mnew ← {}
7: for each mapping (c, c′, Smap(c, c

′)) ∈Mfr do
8: for (x, x′) ∈ (Sup(c)× Sup(c′)) ∪ (Sub(c)× Sub(c′)) do
9: m← (x, x′, Smap(x, x

′))
10: if Smap(x, x

′) ≥ κ and m /∈M and m /∈Mex then
11: Mnew ←Mnew ∪ {m}
12: end if
13: end for
14: end for
15: Mex ←Mex ∪Mnew

16: Mfr ←Mnew

17: end while
18: returnMex

At each iteration, the newly extended mappings will serve as the frontier for the next

iteration, until there is no more mappings to be discovered (Line 15-16). Overall, the

algorithm iteratively explores 1-hob neighbours that have subsumption relationships

with the matched classes, trying to find mappings that have been missed during

mapping prediction.

Note that although κ is a hyperparameter, the empirical evidence shows that the

results are insensitive to κ, and thus we set it to a fixed value κ = 0.9.

3.3.2 Mapping Repair

Recall from Section 2.1 that mapping repair aims to remove mappings that will cause

logical conflicts after integrating two ontologies. A “perfect repair” (a.k.a. a diagnosis)

refers to removing a minimal number of mappings to achieve logical coherence (see

Section 2.1). However, computing a diagnosis is usually time-consuming, and there

may be no unique solution. To address this, [15] proposes a propositional logic-based

repair method that can efficiently compute an approximate repair R which ensures

that:

19

(i) R is a subset of the diagnosis (so that there is no sacrifice of correct mappings);

(ii) only a small number of unsatisfiable classes remain.

Mapping repair is commonly used in many classsic OM systems, but is rarely con-

sidered in machine learning-based approaches. In this work, we adopt the repair tool

developed by [15] as the final step of our mapping refinement process.

20

Chapter 4

Evaluation

We evaluate BERTMap on three biomedical ontology alignment tasks based on the

OAEI LargeBio Track1. Internally, we conduct thorough ablation study by comparing

BERTMap under unsupervised and semi-supervised settings, with or without identity

synonyms, and with or without the complementary corpus. Moreover, we find that

BERTMap is robust to hyperparameter selection. Externally, we compare BERTMap

with various baseline systems including both rule-based and machine learning-based

models. In particular, we find that BERTMap can often outperform the state-of-the-

art ontology alignment systems, LogMap [13] and AML [8], on these datasets.

4.1 Experiment Settings

In this section, we illustrate, in details, the ontology alignment datasets that we use to

evaluate BERTMap against other baseline systems. We also present different settings

of BERTMap, the evaluation metrics, and the baselines and why we choose them.

4.1.1 Datasets and Tasks

The evaluation first considers the FMA-SNOMED and FMA-NCI small fragment

tasks from the OAEI LargeBio Track. Table 4.1 summarizes the numbers of classes

in source (SRC) and target (TGT) ontologies, and the numbers of reference mappings.

“Refs (=)” refers to the reference mappings to be considered, while “Refs (?)” refers

to the reference mappings that will cause logical inconsistency after alignment and

are ignored as suggested by the LargeBio Track. We also consider an extended task of

FMA-SNOMED, denoted as FMA-SNOMED+, where the target ontology is extended

1http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/

21

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/

Task SRC TGT Refs (=) Refs (?)

FMA-SNOMED 10,157 13,412 6,026 2,982
FMA-NCI 3,696 6,488 2,686 338

Table 4.1: Numbers of classes and reference mappings in the FMA-SNOMED and FMA-NCI tasks.

by introducing the labels from the latest version of SNOMED.2 This is because the

LargeBio SNOMED is many years out of date, and the naming scheme in the newly

released SNOMED has changed and many more class labels have been added. We

adopt the following strategy to construct SNOMED+:

For each class c in the class set of SNOMED, we extract its labels Ω(c)

and for each label ω ∈ Ω(c), we search for classes in the original SNOMED

that have ω as an alias3; we then add all the labels of the searched classes

back to the LargeBio SNOMED to obtain SNOMED+.

Note that we also use these additional labels to construct the complementary corpus

for the FMA-SNOMED task. The key difference is that they are used for fine-tuning

alone (to enhance the fine-tuning corpora) on the FMA-SNOMED task but for both

fine-tuning and prediction on the FMA-SNOMED+ task. This means that on the

FMA-SNOMED+ task, not only the BERTMap systems but also the baseline models

can be benefited from the complementary labels because they are added back to the

input ontology.

4.1.2 Evaluation Metrics

We evaluate all the systems on Precision (P), Recall (R), and Macro-F1 (F1), defined

as:

P =
|Mout ∩M=\M?|
|Mout\M?|

R =
|Mout ∩M=\M?|
|M=\M?|

F1 =
2 · P ·R
P +R

2The version of 20210131 is available at: https://www.nlm.nih.gov/healthit/snomedct/

index.html.
3In SNOMED, aliases are defined through the annotational properties rdfs:label, rdf:

about="http://www.w3.org/2004/02/skos/core#altLabel", and rdf:about="http://www.w3.

org/2004/02/skos/core#prefLabel".

22

https://www.nlm.nih.gov/healthit/snomedct/index.html
https://www.nlm.nih.gov/healthit/snomedct/index.html
rdf:about="http://www.w3.org/2004/02/skos/core#altLabel"
rdf:about="http://www.w3.org/2004/02/skos/core#altLabel"
rdf:about="http://www.w3.org/2004/02/skos/core#prefLabel"
rdf:about="http://www.w3.org/2004/02/skos/core#prefLabel"

whereMout is the system’s output mappings,M= andM? refer to reference mappings

to be considered (Refs (=)) and ignored (Refs (?)), respectively. In the unsupervised

setting, we divideM= intoMval (10%) andMtest (90%); and in the semi-supervised

setting, we divideM= intoMtrain (20%),Mval (10%) andMtest (70%). When com-

puting the metrics on the hold-out validation or test set, we should regard reference

mappings that are not in this set as neither positive nor negative (i.e., as ignored

mappings). For example, during validation, we add the mappings from Mtrain (if

semi-supervised) andMtest (for both settings) intoM? when calculating the metrics.

4.1.3 BERTMap Settings

We set up various BERTMap settings considering

(i) being unsupervised (without co) or semi-supervised (+co);

(ii) including the identity synonyms (+ids);

(iii) being augmented with a complementary corpus (+cp); and

(iv) applying mapping extension (ex) and repair (rp).

In fine-tuning, the semi-supervised setting takes all the label pairs extracted from

both within the input ontologies and Mtrain as training data, label pairs from Mval

as validation data and label pairs from Mtest as test data, while the unsupervised

setting partitions all the label pairs extracted from within the input ontologies into

80% for training and 20% for validation. Note that the the validation in fine-tuning

is different from the mapping validation which usesMval because the former concerns

the performance of the BERT classifier while the latter concerns selecting the best

hyperparameters for determining output mappings.

Besides, we set the positive-negative sample ratio to 1 : 4. To be more specific, we

sample 4 non-synonyms for each synonym in co, and 2 soft and 2 hard non-synonyms

for each synonym in other corpora. We use Bio-Clinical BERT, which has been pre-

trained on biomedical and clinical domain corpora [1]. The BERT model is then

fine-tuned for 3 epochs with a batch size of 32, and evaluated on the validation set

for every 0.1 epoch, through which the best checkpoint (on the cross-entropy loss) is

selected for subsequent mapping prediction. The cut-off of sub-word inverted index-

based candidate selection is set to 200. Our implementation uses

(i) owlready24 for ontology processing;

4https://owlready2.readthedocs.io/en/latest/.

23

https://owlready2.readthedocs.io/en/latest/

(ii) transformers5 [33] for BERT; and

(iii) a single GTX 1080Ti GPU for training and making prediction.

After fine-tuning, we perform a 2-step mapping validation using Mval as follows:

we first validate the scored mappings from prediction and obtain the best {τ, λ}; we

then extend the mappings by Algorithm 1 (with the mapping extension threshold

κ set to 0.9) and validate the extended mappings and obtain another best mapping

filtering threshold λ. Interestingly, in all our BERTMap experiment settings, we find

the best λ obtained in the first step always coincides with the best λ obtained in the

second step. This demonstrates the robustness of our mapping extension algorithm.

After validation, we repair and ouput the mappings. Note that we also test BERTMap

without extension and repair, and in this case, we skip the second mapping validation

step and output mappings with scores ≥ λ.

4.1.4 Baselines

We compare BERTMap with various baselines including rule-based an machine learning-

based ones. As mentioned in 3.2.2, the mapping score function of BERTMap applies

string-matching on “easy” mappings (i.e., to detect classes that share at least one la-

bel), so it is reasonable to include the (i) string-matching as an independent baseline

model. Mathematically, it computes the mapping score as:

Sstring-match(c, c′) =

{
1.0 if Ω(c)

⋂
Ω(c′) 6= ∅

0 otherwise

Moreover, we consider its improved version, the (ii) edit-similarity model, as another

baseline, which has the following expression:

Sedit-similarity(c, c′) = max
(l,l′)∈Ω(c)×Ω(c′)

nes(l, l′)

where nes(·, ·) refers to the normalized edit similarity (or 1 - (the normalized edit

distance6) between two strings. Note that this model assigns the maximum nor-

malized edit similarity score between label pairs of two classes as their mapping

score, and it incorporates all the string-matching cases (i.e., when ∃ (l, l′) ∈ Ω(c) ×
Ω(c′) s.t. nes(l, l′) = 1.0).

5https://huggingface.co/transformers/.
6Also known as normalized Levenshtein Distance whose information is available at: https:

//en.wikipedia.org/wiki/Levenshtein_distance.

24

https://huggingface.co/transformers/
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance

We also consider two pre-trained BERT embedding models as introduced in [23]:

the (iii) [CLS] token embedding model and the (iv) mean token embedding model.

Recall from the Section 2.2 that BERT’s outputs at layer l can be expressed as:

fbert(x, l) = (v
(l)
CLS,v

(l)
1 , ...,v

(l)
N ,v

(l)
SEP ,v

′(l)
1 , ...,v

′(l)
N ′) ∈ R(N+N ′+2)×d

The [CLS] token embedding model takes v
(L)
CLS as the final representation of the whole

input sequence whereas the mean token embedding model takes fbert(x, L), i.e., the

centroid of all the token embeddings. Note that L is the index of the last layer. We

encode each alias sentence of a class using these two strategies, and then average

all the resulting sentence embeddings as the class embedding. The mapping score

between two classes is thus obtained by computing the cosine similarity between

their embeddings. The reason for including these two models is to examine if the

background knowledge of BERT can be directly transferred to the ontology alignment

task. However, our results show that such models perform even worse than the string-

matching baseline. Therefore, we opt to not discuss the corresponding results in the

result tables (see Section 4.2).

It is important to include the state-of-the-art systems as baselines — in this work,

we consider (v) LogMap and (vi) AML, which are leading systems in many OAEI

tracks and other tasks. Furthermore, we consider some variants of LogMap includ-

ing (vii) LogMapLt, the lexical matching part of LogMap; and (viii) LogMap-ML∗,

the machine learning extension of LogMap. Note that LogMap-ML∗ is a variant of

LogMap-ML [6] using no branch conflicts but only LogMap anchor mappings for ex-

tracting samples for training, where Word2Vec is used to embed the class label and

a Siamese Neural Network with Multilayer Perception is used as the classifier.

The string similarity-based and BERT embedding-based models are our internal

baselines, for which we set up the same candidate selection and hyperparameter search

procedure as for BERTMap; whereas AML and LogMap-related models are external

systems, and we use their default implementation to produce the results.

4.2 Results

The results together with the corresponding hyperparameter settings are presented

in Tables 4.2, 4.3 and 4.4, where 90% Test Mappings and 70% Test Mappings re-

fer to the results measured on Mtest of the unsupervised setting and Mtest of the

25

90% Test Mappings 70% Test Mappings

System {τ, λ} Precision Recall Macro-F1 Precision Recall Macro-F1

io (tgt2src, 0.999) 0.705 0.240 0.359 0.649 0.239 0.350
io+ids (tgt2src, 0.999) 0.835 0.347 0.490 0.797 0.346 0.483
io+cp (src2tgt, 0.999) 0.917 0.750 0.825 0.895 0.748 0.815
io+ids+cp (src2tgt, 0.999) 0.910 0.758 0.827 0.887 0.755 0.816
io+ids+cp (ex) (src2tgt, 0.999) 0.896 0.771 0.829 0.869 0.771 0.817
io+ids+cp (ex+rp) (src2tgt, 0.999) 0.905 0.771 0.833 0.881 0.771 0.822

io+co (src2tgt, 0.997) NA NA NA 0.937 0.564 0.704
io+co+ids (src2tgt, 0.999) NA NA NA 0.850 0.714 0.776
io+co+cp (src2tgt, 0.999) NA NA NA 0.880 0.779 0.826
io+co+ids+cp (src2tgt, 0.999) NA NA NA 0.899 0.774 0.832
io+co+ids+cp (ex) (src2tgt, 0.999) NA NA NA 0.882 0.787 0.832
io+co+ids+cp (ex+rp) (src2tgt, 0.999) NA NA NA 0.892 0.786 0.836

string-match (combined, 1.000) 0.987 0.194 0.324 0.983 0.192 0.321
edit-similarity (combined, 0.920) 0.971 0.209 0.343 0.963 0.208 0.343
LogMapLt NA 0.965 0.206 0.339 0.956 0.204 0.336
LogMap NA 0.935 0.685 0.791 0.918 0.681 0.782
AML NA 0.892 0.757 0.819 0.865 0.754 0.806
LogMap-ML∗ NA 0.944 0.205 0.337 0.928 0.208 0.340

Table 4.2: Results of BERTMap under different settings and baselines on the FMA-SNOMED
task.

90% Test Mappings 70% Test Mappings

System {τ, λ} Precision Recall Macro-F1 Precision Recall Macro-F1

io (src2tgt, 0.999) 0.930 0.836 0.880 0.911 0.834 0.871
io+ids (src2tgt, 0.999) 0.926 0.834 0.878 0.906 0.832 0.868
io+ids (ex) (src2tgt, 0.999) 0.916 0.852 0.883 0.894 0.851 0.872
io+ids (ex+rp) (src2tgt, 0.999) 0.924 0.851 0.886 0.905 0.851 0.877

io+co (src2tgt, 0.999) NA NA NA 0.913 0.841 0.875
io+co+ids (src2tgt, 0.999) NA NA NA 0.913 0.836 0.873
io+co+ids (ex) (src2tgt, 0.999) NA NA NA 0.899 0.852 0.875
io+co+ids (ex+rp) (src2tgt, 0.999) NA NA NA 0.908 0.852 0.879

string-match (src2tgt, 1.000) 0.978 0.672 0.797 0.972 0.665 0.790
edit-similarity (src2tgt, 0.930) 0.978 0.728 0.834 0.972 0.724 0.830
LogMapLt NA 0.953 0.717 0.819 0.940 0.709 0.808
LogMap NA 0.869 0.867 0.868 0.838 0.868 0.852
AML NA 0.895 0.829 0.861 0.868 0.825 0.846
LogMap-ML∗ NA 0.955 0.684 0.797 0.942 0.700 0.803

Table 4.3: Results of BERTMap under different settings and baselines on the FMA-SNOMED+
task.

semi-supervised setting, respectively. To fairly compare the unsupervised and semi-

supervised settings, we report the results on both 90% and 70% Test Mappings for

the unsupervised setting.

The overall results show that BERTMap can achieve higher F1 score than all

the baselines on the FMA-SNOMED and FMA-SNOMED+ tasks, but its F1 score

26

90% Test Mappings 70% Test Mappings

System {τ, λ} Precision Recall Macro-F1 Precision Recall Macro-F1

io (src2tgt, 0.999) 0.930 0.847 0.887 0.912 0.851 0.880
io+ids (src2tgt, 0.999) 0.936 0.842 0.887 0.920 0.845 0.881
io+ids (ex) (src2tgt, 0.999) 0.926 0.852 0.888 0.907 0.854 0.880
io+ids (ex+rp) (src2tgt, 0.999) 0.938 0.852 0.893 0.922 0.854 0.887

io+co (src2tgt, 0.999) NA NA NA 0.939 0.838 0.886
io+co+ids (src2tgt, 0.999) NA NA NA 0.961 0.805 0.876
io+co+ids (ex) (src2tgt, 0.999) NA NA NA 0.955 0.813 0.879
io+co+ids (ex+rp) (src2tgt, 0.999) NA NA NA 0.959 0.813 0.880

string-match (tgt2src, 1.000) 0.980 0.727 0.835 0.975 0.733 0.837
edit-similarity (src2tgt, 0.900) 0.976 0.768 0.860 0.970 0.774 0.861
LogMapLt NA 0.963 0.815 0.883 0.953 0.812 0.877
LogMap NA 0.938 0.900 0.919 0.922 0.897 0.909
AML NA 0.936 0.900 0.918 0.919 0.898 0.909
LogMap-ML∗ NA 0.968 0.715 0.822 0.959 0.714 0.818

Table 4.4: Results of BERTMap systems under different settings and baselines on the FMA-NCI
task.

is lower than LogMap and AML on the FMA-NCI task. On the FMA-SNOMED

task, the unsupervised BERTMap can surpass AML (resp. LogMap) by 1.4% (resp.

4.2%) in F1, while the semi-supervised BERTMap can exceed AML (resp. LogMap)

by 3.0% (resp. 5.4%). The corresponding rates become 2.5% (resp. 1.8%) and

3.3% (resp. 2.7%) on the FMA-SNOMED+ task. On the FMA-NCI task, the best

F1 score of the unsupervised BERTMap is worse than AML (resp. LogMap) by

2.5% (resp. 2.6%), and the best F1 score of the semi-supervised BERTMap is worse

than AML (resp. LogMap) by 2.3% (resp. 2.3%). Note that BERTMap without

ex or rp consistently outperforms LogMapLt on all the tasks. This suggests that

with a more suitable mapping refinement strategy, BERTMap is likely to outperform

LogMap on the FMA-NCI task as well. BERTMap can also significantly outperform

the machine learning-based baseline LogMap-ML∗ on all the three tasks. This is

because LogMap-ML∗ relies on LogMap and heuristic rules to extract high quality

samples (anchor mappings) for training, but this strategy is not effective on our

data. In contrast, BERTMap primarily relies on unsupervised data (synonyms and

non-synonyms) to fine-tune the BERT model.

By comparing different BERTMap settings, we have the following observations.

First, the semi-supervised setting (+co) is generally better than the unsupervised

setting (without co), implying that BERTMap can effectively learn from given map-

pings. Second, complementary corpus is helpful especially when the task-involved

ontologies are deficient in class labels — on the FMA-SNOMED task, BERTMap

27

Figure 4.1: Validation results of BERTMap (io + co + ids) on the FMA-SNOMED+ task with
mapping score threshold λ ranging from 0 to 1. The left and right plots correspond to τ = combined

and τ = src2tgt, respectively.

with the complementary corpus (+cp) attains a higher F1 score than string-matching,

edit-similarity, LogMapLt and LogMap-ML∗ baselines, all of which rely on class la-

bels from within the input ontologies, by around 50%. Third, considering the identity

synonyms (+ids) may slightly improve the performance or make no difference. Fi-

nally, mapping extension and repair can consistently boost the performance, but not

by much, possibly because it is hard to improve given that BERTMap’s prediction

part has already achieved high performance.

It is interesting to notice that BERTMap is robust to hyperparameter selection;

most of its settings lead to the same best hyperparameters (i.e. τ = src2tgt and

λ = 0.999}) on the validation set,Mval. To further investigate this phenomenon, we

visualize the validation process by presenting the plots of evaluation metrics against

λ in Figure 4.1, where we can see that as λ increases, Precision increases significantly

while Recall drops only slightly — thus F1 increases and attains the maximum at

λ = 0.999. This observation is consistent for all BERTMap models in this paper (see

Section 4.3 for full ablation results).

In Table 4.5, we present some examples of reference mappings that are retrieved

by BERTMap but not by LogMap or AML. We can clearly see that, the BERT

classifier captures the implicit connection between “third cervical” and “C3” in the

first example, “posteior” and “dorsal” in the second example, as well as “wall” and

“membrane” in the third example. This demonstrates the strength of contextual

embeddings over the traditional lexical matching.

28

FMA Class SNOMED Class

Third cervical spinal ganglion C3 spinal ganglion

Deep posterior sacrococcygeal
ligament

Structure of deep dorsal
sacrococcygeal ligament

Wall of smooth endoplasmic
reticulum

Agranular endoplasmic
reticulum membrane

Table 4.5: Typical examples of reference mappings that are predicted by BERTMap but not by
LogMap or AML.

4.3 Mapping Thresholds on Validation Set

In Figure 4.2, 4.3 and 4.4, we present, for all the BERTMap models in this paper,

the plots of evaluation metrics (Precision, Recall and Macro-F1) against the mapping

threshold λ ∈ [0, 1) on the validation set. Figure 4.3 correspond to (left-to-right,

top-to-bottom) the combined, src2tgt, and tgt2src results of io, io + ids, io + co,

io + co + ids, io + ids + cp, io + co + ids + cp settings on the FMA-SNOMED task.

Figure 4.2 and 4.3 correspond to the combined, src2tgt, and tgt2src results of io,

io+ ids, io+ co, io+ co+ ids settings on the FMA-NCI task and FMA-SNOMED+

task, respectively.

Note that the validation results are generally worse than testing results because

when evaluating on smaller mapping set, we need to ignore more positive mappings

whereas the number of negative mappings stays the same, resulting in the prominent

drop of F1 score.

29

Figure 4.2: Precision, Recall and Macro-F1 of BERTMap on the validation sets of the FMA-
NCI task as the mapping score threshold ranges from 0 to 1 (excluded 1 because it represents the
sting-match result). The maximum F1 is indicated by a red vertical line.

30

Figure 4.3: Precision, Recall and Macro-F1 of BERTMap on the validation sets of the FMA-
SNOMED task as the mapping score threshold ranges from 0 to 1 (excluded 1 because it represents
the sting-match result). The maximum F1 is indicated by a red vertical line.

31

Figure 4.4: Precision, Recall and Macro-F1 of BERTMap on the validation sets of the FMA-
SNOMED+ task as the mapping score threshold ranges from 0 to 1 (excluded 1 because it represents
the sting-match result). The maximum F1 is indicated by a red vertical line.

32

Chapter 5

Conclusions & Discussion

In this Chapter, we first reiterate some principles significant to OM system design

(Section 5.1); we then discuss if mapping repair is necessary to OM (Section 5.2);

finally, we conclude our work with a qualitative analysis of BERTMap from various

aspects.

5.1 Principles of OM Systems

An OM system usually needs a classifier or a predictor that can decide whether or

not two concepts are semantically related. But in the actual scenario, the classifier or

predictor alone is not enough because the potential candidates is typically of a large

number of magnitude — this poses two fundamental challenges:

(i) to distinguish concepts that are seemingly close but are actually different is

more difficult that decide whether two concepts have some extent of similarity;

(ii) to construct an efficient and effective searching algorithm without sacrificing

much recall.

A full-fledged OM system needs to detect concepts that are semantically related out

of tens of thousands of options and to be evaluated correspondingly. Evaluation

metrics that can sufficiently reveal an OM model’s ability in real-world application

are Precision, Recall and Macro-F1 on the mappings, or their semantic variants

that also take logical conflicts into consideration [11].

Current machine learning-based approaches often lack transferability and convinc-

ing evaluation scheme. That is, the authors often claimed promising results on some

particular tasks using incomplete evaluation methods. For instance, in [18], the au-

thors focus on developing a system that can predict IS-A (subsumption) relationships

33

Figure 5.1: Logical inconsistency example after integrating FMA and NCI ontologies through
three mappings (indicated by green lines) between the classes named “Visceral Pleura”, “Lung” and
“Thoracic Cavity” in both ontologies [14].

between concepts of an ontology, such that it can place a new concept into its right

position of an existing ontology to achieve ontology maintenance. However, instead

of examining the real performance on concept placement, the evaluation is simplified

to a classification problem with positive-negative sample ratio set to 1 : 1. Achieving

prominent scores on such a simplified task is far from the real-world application and

thus is not convincing.

In short, when we design a machine learning-based OM system, directly (e.g.,

supervised learning) or indirectly (e.g., unsupervised or semi-supervised learning), we

need to tackle with the challenges mentioned above and evaluate the system fairly.

Inspired by the relative “chaos” in evaluating OM systems, especially the machine

learning-based ones, we also consider developing an OM evaluation platform that can

evaluate and compare different OM systems in various scenarios as one of the future

works (see details in Section 6.2).

5.2 Is Mapping Repair Necessary?

Consider an example taken from [14] (see Figure 5.1), there are clear correspondences

between the entities “Lung”, “Visceral Pleura” and “Thoracic Cavity” in both FMA

and NCI ontologies. However, integrating FMA and NCI through these three map-

pings makes “Visceral Pleura” unsatisfiable (marked by red color). According to NCI,

34

“Visceral Pleura” is a “Pleural Tissue” located in “Thoracic Cavity”, which according

to FMA, is a “Immaterial Anatomical Entity”. But “Visceral Pleura” is also located

in “Lung”, which is a “Material Anatomical Entity” specified in FMA. This leads to

a contradiction because “Visceral Pleura” is located in an anatomical entity that is

both immaterial and material. Nevertheless, according to the knowledge of a biolo-

gist, such logical error is not an actual conceptual error but instead a design choice

in categorizing biological entities. In this example, “Thoracic Cavity” can be deemed

as an immaterial anatomical entity or as an indivisible part of a material anatomical

entity depending on how you think of it. Hence, a natural question is how should we

justify mapping repair in such cases — is it necessary?

Admittedly, by employing reasoning tools, we can detect potential logical conflicts

which may indicate fundamental errors in the original design. We can thus apply

mapping repair to achieve quality assurance, which is an essential part of ontology

maintenance. However, the inconsistency might happen because of design choices

rather than a genuine mistake; and in this case, we need human experts to be involved.

The OAEI LargeBio Track adopts the semantic Precision, Recall and F1 which regard

inconsistent mappings as neither positive nor negative. Such evaluation actually

underestimates the system performance because not all logically incoherent mappings

are indeed wrong or should be neglected. In future work, we also need to evaluate on

plain Precision, Recall and F1 to obtain an overestimation of the system performance.

By combining these two evaluation results, we can possibly have a more comprehensive

analysis of the true performance.

5.3 Qualitative Analysis of BERTMap

In this report, we propose a novel ontology alignment system, BERTMap, which ex-

ploits the textual, structural and logical information of ontologies. The backbone of

BERTMap is its predictor, which utilizes the contextual embedding language represen-

tation model, BERT, to learn word semantics and contexts effectively, and computes

mapping scores with the aid of sub-word inverted indices. The mapping extension

module recalls more mappings, and the repair module removes some mappings that

cause logical conflicts for higher precision.

BERTMap suits real-world ontology alignment tasks since it works well under the

unsupervised learning setting and can be further improved by given mappings (e.g.,

from human experts or user interaction) and/or complementary sources. BERTMap

has already achieved promising results on three biomedical ontology alignment tasks,

35

and even outperform the leading OM systems, LogMap and AML. In the following

paragraphs, we provide qualitative analysis of BERTMap from various perspectives

including novelty, generalizability, scalability, and evaluation.

Novelty. BERTMap demonstrates a promising way of utilizing the contextual

embedding model in OM while direct applications (i.e., to use pre-trained BERT

embeddings or formulate the task in a supervised learning way with SentenceBERT

architecture) has been proven not effective in the preliminary work [23]. Moreover,

BERTMap requires no sophisticated feature engineering or auxiliary data from various

sources, unlike other machine learning-based OM systems, especially those concerning

supervised learning. It sufficiently utilizes what the input ontologies can provide

(unsupervised), and can be enhanced further by known mappings (semi-supervised)

and/or complementary ontology. This suggests that BERTMap has a highly flexible

system pipeline with no strict requirement of annotated datasets. Finally, BERTMap

considers both text-level contexts (by using the contextual embeddings) and ontology-

level contexts (in the graph-based mapping extension algorithm), while to the best

of our knowledge, there are no leading OM solutions that consider both of these

contexts.

Generalizability & Transferability. BERTMap does not require any domain-

specific knowledge and choosing a suitable pre-trained BERT is simply an engineering

choice with no major influence on the final performance — what is really important is

how we fine-tune the pre-trained BERT and how we use the classifier to make mapping

predictions. Since there is no part in the system pipeline that is customized to on-

tologies of specific domains, BERTMap can be well suited to tasks beyond biomedical

domains.

Scalability & Time Consumption. The real time-consuming part is BERT pre-

training, which has no cost at all because there are many publicly available pre-trained

variants. In contrast, fine-tuning only takes a few epochs (typically 2-4 epochs) which

does not take much time even training on outdated GPUs (average around 40 minutes

on GTX 1080Ti on our datasets). Also, in real practice, OM is an offline process that

does not require instant responses — spending this amount of time to obtain the

matching results should not be viewed as a major concern. In fact, we actually

develop the sub-word inverted index-based candidate selection algorithm to reduce

the time complexity of searching to linear.

Evaluation. Regarding the machine learning-based baselines, BERTMap is mainly

unsupervised suggesting that it can be evaluated on datasets that have no hold-out

36

annotated data for training, and thus is not comparable to many machine learning-

based OM systems because many of them are supervised. Another concern is that

many machine learning-based OM systems have sophisticated engineering choices

such that they cannot be easily reproduced without knowing details. On the other

hand, some may argue that comparing to LogMap and AML is not representative

enough, but these two systems have been well-acknowledged as state-of-the-art OM

systems in general, and they have participated in many OM tasks including the OAEI

tracks for years, with continuous adaptation and improvement. So our results actually

imply several indirect comparisons to other systems that have already been reported

in the OAEI LargeBio results. Lastly, choosing the LargeBio dataset is because it is

the most challenging task in the OAEI tracks, which already involves ontologies of

more than 10K concepts. We reiterate that BERTMap does not involve any essential

customization on particular datasets, so if it can work on LargeBio, it can be applied

to other datasets in a similar way.

37

Chapter 6

Future Research Plan

BERTMap is not just a standalone OM system, it actually demonstrates the poten-

tial of applying the pre-trained language model to OM, and thus implies a series of

research work around this topic. As a result, we are working towards high-quality

data integration with OM-PLM (Ontology Matching with Pre-trained Language

Modelling).

In this chapter, we will illustrate how to extend our work along this direction from

several aspects including:

(i) Short-term investigation of what BERTMap have missed in its system design

and how to improve them with more comprehensive engineering choices;

(ii) Long-term exploration of a more complicated adaption of the pre-trained lan-

guage model in the OM system’s design;

(iii) Task extension to OM tasks beyond matching class equivalence;

(iv) Ontology evaluation platform that provides fair comparison for both machine

learning-based and non-machine learning-based OM systems under various sce-

narios/settings.

In summary, we intend to construct a general OM model that utilizes the enormous

background knowledge provided by the pre-trained language model to address differ-

ent OM tasks such as equivalence, subsumption, or more complicated relationships

between classes, instances, and relations. To better reinforce all the claims and state-

ments around our models, we aim to establish a benchmark work that evaluates

several representative OM models in a rigid, reasonable, and fair environment and

ultimately provides a publicly acknowledged platform open to all OM systems.

38

6.1 BERTMap Extension

In this section, we provide some technical aspects (short-term and long-term) of how

to extend BERTMap to be a better OM-PLM model. We reiterate some highlights of

the current BERTMap as follows:

(i) it is primarily unsupervised and thus can be free from the shortage of annotated

data;

(ii) it can be flexibly extended to incorporate annotated data and/or external re-

sources;

(iii) it adopts an indirect way to compare class similarity by constructing a fine-

tuning task to learn synonyms and non-synonyms;

(iv) it includes mapping extension and repair whose algorithms can be well-adapted

to BERTMap’s scoring method but not restricted to it.

For a short-term investigation, we do not intend to reconstruct the system pipeline

from scratch but instead search for improvement while keeping the above charac-

teristics; for a long-term exploration, we wish to keep (i) and (ii) while integrating

(iii) and (iv) to build a more compact model with class representations that encode

textual, structural, and logical information altogether.

6.1.1 Transitive Property

Recall that we have considered reflexive (identity synonyms) and symmetrical prop-

erties of synonyms and non-synonyms, but we have not considered the transitive

property, i.e., if ω and ω′ are synonymous (resp. non-synonymous), ω′ and ω′′ are

synonymous (resp. non-synonymous), then ω and ω′′ should also be regarded as a

synonym (resp. non-synonym) pair. However, considering such property will drasti-

cally increase the size of the training corpora, so we need a more careful strategy to

adopt this idea in our future work.

6.1.2 Negative Sampling

Negative sampling is essential to a classification task because high-quality nega-

tive samples can save considerable training time while preserving performance. In

BERTMap, we adopt a relatively naive solution by categorizing non-synonyms into

two types with soft non-synonyms extracted from random pairs of classes and hard

39

non-synonyms extracted from sibling classes. But in fact, we could develop a more

sophisticated negative sampling approach from, e.g., establishing a more comprehen-

sive disjointness heuristic and emphasizing more on the semantically ambiguous pairs.

For extremely large-scale ontologies, we also need some sampling technique on the

positive samples.

6.1.3 Class Subsumption

As indicated in Section 2.1, BERTMap aims to solve cross-ontology class equivalence,

but ontology alignment, in general, is not restricted to this relationship. An ongoing

research project of ours is BERTSubsumption which adopts the similar techniques as

in BERTMap to address cross-ontology subsumption. The major differences are:

(i) Instead of training on synonymous or non-synonymous label pairs, we are now

shifting to label pairs from parent-children classes.

(ii) Hard non-synonyms can be extracted from uncle-nephew classes.

(iii) Symmetrical property is invalid here unlike in the equivalence relationship.

(iv) We could possibly examine if BERT has the ability of probabilistic reasoning

because in the case when class c is subsumed by class c′ and vice versa, can we

determine if c is equivalent to c′?

Moreover, instead of training on isolated class pairs, we can formulate the BERT

inputs as also including the ontology contexts such that it becomes a long-text clas-

sification problem.

6.1.4 Prompt Learning

Recall from Chapter 3 that Ω(·) is the function that returns preprocessed labels of an

input class, and ω represents an individual label, we illustrate the current BERTMap

prediction in Figure 6.1; the mapping score between class c and c′ is given by the

average of all the synonym probabilities (predicted by the fine-tuned BERT classi-

fier) between their respective labels. This relatively simple approach has been proven

effective in our evaluation results but it is far from exploiting the full potential of

BERT. To be specific, it now considers isolated classes with isolated labels, mean-

ing that each prediction is conducted on a single label pair without incorporating

ontology-level contexts. In fact, considering isolated labels helps to keep the relative

40

Class Class

Label

Label

Label

Label

Label Label

Mapping Score Averaged Synonym Probability

Figure 6.1: Illustration of Mapping Prediction of current BERTMap.

input scale because an ontology does not provide a constant number of labels for

each class; but we should consider the ontology-level contexts by e.g., formatting the

information of neighbouring classes as a part of BERT’s input.

We first present a naive approach using long-text classification. Suppose class c

has classes a and b as its neighbours, class c′ has classes a′ and b′ as its neighbours,

then we can format the BERT input as follows:

[CLS] T (ωc) [EOS] T (ωa) [EOS] T (ωb) [SEP] T (ωc′) [EOS] T (ωa′) [EOS]

T (ωb′)

where the first sentence is given by “T (ωc) [EOS] T (ωa) [EOS] T (ωb)” and the second

sentence is given by “T (ωc′) [EOS] T (ωa′) [EOS] T (ωb′)”, T (·) returns the sequence

of sub-word tokens after tokenzing some label of a class, [EOS] is a new special token

used for separating tokenized label sequence of different classes. In this manner, to

predict if a label pair, ωc and ωc′ , are synonymous, it also needs to consider the

correspondences among the neighbours. To investigate if this method actually works,

we need to explore:

(i) How do we select meaningful neighbours (e.g., only those with subsumption

relationships) and how many of them should we consider?

41

BERT

BERT

BERT

To-be-aligned input sequence

context sequence

context sequence

Pooling
Layer Mapping Score

Figure 6.2: Illustration of Prompt Learning Using BERT Ensembling.

(ii) How long should we train for BERT to “embrace” the new special token [EOS]?

(iii) If we again consider an isolated label to represent a class in the input of BERT,

the number of possible combinations will be drastically increased after consid-

ering the neighbours — what sort of sampling technique needs to be employed

here?

Such learning scheme is referred to as prompt learning because we use the la-

bels of neighbouring classes as “prompts” to help the synonym classification. It is

recommended to read a full survey of prompt learning in [19] for various interesting

applications. Nevertheless, the “prompting” method introduced above is still rela-

tively simple because we cannot emphasize the labels of to-be-aligned classes — an

even further development is to leverage model ensembling.

In Figure 6.2, we propose using BERT ensembling to predict the mapping score

between class c and class c′, where we use n fine-tuned BERT to encode the in-

put sequence of to-be-aligned classes and the context sequences associated to them.

Subsequently, the n hidden representations are merged through a pooling layer to

compute the final mapping score. In this way, we can easily attach more impor-

tance to the main input sequence by adjusting the pooling weights, and for different

BERTs we can consider ontology-level contexts distinguished by e.g., different types

of relationships and/or semantic locality.

42

6.2 OM Evaluation

As discussed in Section 5.1, OM evaluation is not strictly regulated among the ma-

chine learning-based systems and there is no public platform available for comparing

non-machine learning-based OM models to machine learning-based ones. Thus, an-

other direction of our future work will be focusing on creating comprehensive OM

benchmarks with various evaluation settings aimed for different purposes. The most

general scenario will be evaluating on Precision, Recall and F1 or their semantic

variants that consider logical coherence. We can also evaluate systems on Hit@K

and MRR which put more emphasis on providing suggestions of possible alignments

rather than detecting the exact matches. However, to compute a meaningful Hit@K,

we need a sufficient number of high-quality negative samples that are rather similar

to the correct match, e.g., classes from the 1-hob neighbourhood. Nevertheless, many

existing OM papers take this for granted and thus the evaluation results are far from

being convincing.

For machine learning-based models, we need to split data into training, validation

and testing sets with reasonable ratios (e.g., 2 : 1 : 7 as used in evaluating BERTMap

under the semi-supervised setting) for fair comparisons.

For OM data, we are interested in UMLS-based ontologies such as those used

in OAEI tracks and the Mondo Disease Ontologies1 because they are annotated by

human experts and thus can provide trust-worthy ground truth mappings. We will

also consult domain experts to verify the data to further ensure the benchmark quality.

1http://www.obofoundry.org/ontology/mondo.html

43

http://www.obofoundry.org/ontology/mondo.html

Bibliography

[1] Emily Alsentzer, John Murphy, William Boag, Wei-Hung Weng, Di Jindi, Tristan

Naumann, and Matthew McDermott. Publicly available clinical BERT embed-

dings. In Proceedings of the 2nd Clinical Natural Language Processing Workshop,

pages 72–78, June 2019.

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-

ing word vectors with subword information. Transactions of the Association for

Computational Linguistics, 5:135–146, 2017.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garćıa-Durán, Jason Weston, and

Oksana Yakhnenko. Translating embeddings for modeling multi-relational data.

In NIPS, 2013.

[4] Yixin Cao, Zhiyuan Liu, Chengjiang Li, Zhiyuan Liu, Juan-Zi Li, and Tat-Seng

Chua. Multi-channel graph neural network for entity alignment. In ACL, 2019.

[5] Jiaoyan Chen, Pan Hu, Ernesto Jiménez-Ruiz, Ole Magnus Holter, Denvar

Antonyrajah, and Ian Horrocks. Owl2vec*: Embedding of owl ontologies. Mach.

Learn., 110:1813–1845, 2021.

[6] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, Denvar Antonyrajah, Ali

Hadian, and Jaehun Lee. Augmenting ontology alignment by semantic embed-

ding and distant supervision. In European Semantic Web Conference, pages

392–408. Springer, 2021.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

Pre-training of deep bidirectional transformers for language understanding. In

Proceedings of NAACL-HLT, pages 4171–4186, 2019.

[8] Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo Palmonari, Isabel F. Cruz,

and Francisco M. Couto. The agreementmakerlight ontology matching system.

44

In Robert Meersman, Hervé Panetto, Tharam Dillon, Johann Eder, Zohra Bel-

lahsene, Norbert Ritter, Pieter De Leenheer, and Deijing Dou, editors, On the

Move to Meaningful Internet Systems: OTM 2013 Conferences, pages 527–541,

Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[9] I. Horrocks, Jiaoyan Chen, and Jaehun Lee. Tool support for ontology design

and quality assurance. 2020.

[10] Vivek Iyer, Arvind Agarwal, and Harshit Kumar. Veealign: a supervised deep

learning approach to ontology alignment. In OM@ISWC, 2020.

[11] Qiu Ji, Zhiqiang Gao, Zhisheng Huang, and Man Zhu. Semantic precision and

recall for evaluating incoherent ontology mappings. In Runhe Huang, Ali A.

Ghorbani, Gabriella Pasi, Takahira Yamaguchi, Neil Y. Yen, and Beijing Jin, edi-

tors, Active Media Technology, pages 338–347, Berlin, Heidelberg, 2012. Springer

Berlin Heidelberg.

[12] Ernesto Jiménez-Ruiz, Asan Agibetov, Jiaoyan Chen, Matthias Samwald, and

Valerie V. Cross. Dividing the ontology alignment task with semantic embeddings

and logic-based modules. ArXiv, abs/2003.05370, 2020.

[13] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based and

scalable ontology matching. In Lora Aroyo, Chris Welty, Harith Alani, Jamie

Taylor, Abraham Bernstein, Lalana Kagal, Natasha Noy, and Eva Blomqvist,

editors, The Semantic Web – ISWC 2011, pages 273–288, Berlin, Heidelberg,

2011. Springer Berlin Heidelberg.

[14] Ernesto Jiménez-Ruiz, B. C. Grau, I. Horrocks, and Rafael Berlanga Llavori.

Logic-based assessment of the compatibility of umls ontology sources. Journal

of Biomedical Semantics, 2:S2 – S2, 2011.

[15] Ernesto Jiménez-Ruiz, Christian Meilicke, B. C. Grau, and I. Horrocks. Evalu-

ating mapping repair systems with large biomedical ontologies. In Description

Logics, 2013.

[16] Prodromos Kolyvakis, Alexandros Kalousis, and Dimitris Kiritsis. DeepAlign-

ment: Unsupervised ontology matching with refined word vectors. In Proceedings

of NAACL-HLT, pages 787–798, June 2018.

45

[17] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang Chiew Tan.

Deep entity matching with pre-trained language models. Proceedings of the

VLDB Endowment, 14:50 – 60, 2020.

[18] Hao Liu, Yehoshua Perl, and James Geller. Concept placement using bert trained

by transforming and summarizing biomedical ontology structure. Journal of

biomedical informatics, page 103607, 2020.

[19] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Gra-

ham Neubig. Pre-train, prompt, and predict: A systematic survey of prompting

methods in natural language processing, 2021.

[20] I. Loshchilov and F. Hutter. Fixing weight decay regularization in adam. ArXiv,

abs/1711.05101, 2017.

[21] Tomas Mikolov, Kai Chen, G. S. Corrado, and J. Dean. Efficient estimation of

word representations in vector space. In ICLR, 2013.

[22] Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gašić, Lina M.

Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve

Young. Counter-fitting word vectors to linguistic constraints. In Proceedings

of the 2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 142–148, San

Diego, California, June 2016. Association for Computational Linguistics.

[23] Sophie Neutel and M. D. Boer. Towards automatic ontology alignment using

bert. In AAAI Spring Symposium: Combining Machine Learning with Knowledge

Engineering, 2021.

[24] Ikechukwu Nkisi-Orji, Nirmalie Wiratunga, Stewart Massie, Kit-Ying Hui, and

Rachel Heaven. Ontology alignment based on word embedding and random

forest classification. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 557–572. Springer, 2018.

[25] Lorena Otero-Cerdeira, Francisco J Rodŕıguez-Mart́ınez, and Alma Gómez-

Rodŕıguez. Ontology matching: A literature review. Expert Systems with Appli-

cations, 42(2):949–971, 2015.

[26] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using

siamese bert-networks. ArXiv, abs/1908.10084, 2019.

46

[27] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology:

What we know about how bert works. Transactions of the Association for Com-

putational Linguistics, 8:842–866, 2020.

[28] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. Nature, 323:533–536, 1986.

[29] P. Shvaiko and J. Euzenat. Ontology matching: State of the art and future

challenges. IEEE Transactions on Knowledge and Data Engineering, 25(1):158–

176, 2013.

[30] Zequn Sun, Qingheng Zhang, Wei Hu, Chengming Wang, Muhao Chen, Farahnaz

Akrami, and Chengkai Li. A benchmarking study of embedding-based entity

alignment for knowledge graphs. Proceedings of the VLDB Endowment, 13:2326

– 2340, 2020.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, editors, Advances in Neural Information Processing Systems,

volume 30. Curran Associates, Inc., 2017.

[32] Lucy Wang, Chandra Bhagavatula, Mark Neumann, Kyle Lo, Chris Wilhelm,

and Waleed Ammar. Ontology alignment in the biomedical domain using entity

definitions and context. In Proceedings of the BioNLP 2018 workshop, pages

47–55, July 2018.

[33] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-

langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,

Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien

Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin

Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural lan-

guage processing. In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing: System Demonstrations, pages 38–45, Online,

October 2020. Association for Computational Linguistics.

[34] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff

Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan

47

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George

Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex

Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean.

Google’s neural machine translation system: Bridging the gap between human

and machine translation. CoRR, 2016.

[35] Chuncheng Xiang, Tingsong Jiang, Baobao Chang, and Zhifang Sui. Ersom: A

structural ontology matching approach using automatically learned entity repre-

sentation. In Proceedings of the 2015 conference on empirical methods in natural

language processing, pages 2419–2429, 2015.

[36] Han Xiao. bert-as-service. https://github.com/hanxiao/bert-as-service,

2018.

48

https://github.com/hanxiao/bert-as-service

	Introduction
	Background
	Ontology Alignment
	BERT: Pre-training and Fine-tuning
	Related Work
	Traditional OM Systems
	LogMap
	AgreementMakerLight

	Machine Learning-based OM Systems
	Supervised OM Approaches
	Unsupervised OM Approaches

	Preliminary OM Work on Using BERT
	Entity Alignment in Knowledge Graphs
	Ontology Blocking

	BERTMap
	Corpus Construction and BERT Fine-tuning
	Ontology Corpora
	Fine-tuning

	Mapping Prediction
	Candidate Selection
	Mapping Score Computation

	Mapping Refinement
	Mapping Extension
	Mapping Repair

	Evaluation
	Experiment Settings
	Datasets and Tasks
	Evaluation Metrics
	BERTMap Settings
	Baselines

	Results
	Mapping Thresholds on Validation Set

	Conclusions & Discussion
	Principles of OM Systems
	Is Mapping Repair Necessary?
	Qualitative Analysis of BERTMap

	Future Research Plan
	BERTMap Extension
	Transitive Property
	Negative Sampling
	Class Subsumption
	Prompt Learning

	OM Evaluation

	Bibliography

