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Motivation

« Web is evolving — automating knowledge engineering is required

» Language Model + Ontology?
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} }




Motivation

Language Model Ontology
Distributional Semantics Formal
Vectorised Representations Structural
General & Implicit Knowledge Domain & Specific
Language Processing Main Strength Logical Reasoning

Figure 1.1: A brief comparison of language models and ontologies.



Ontology

A formal, explicit specification of a shared conceptualisation

Entities: concepts, properties, instances Machine-readable and sharable domain

Axioms: semantic relationships knowledge




Ontology

° Direclt Semantics Document (in various syntaxes)

» Description logic formalism . . . . .
» High expressiveness & decidable reasoning

nnnnnnn RDF/XML OWL/XML

Serialise

—

e
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« RDF-based Semantics

Ontology RDF Graph
» Graph structure G0y Mapping
« Compatible with existing RDF framework e
 Other features l l
Direct Semantics RDF-based Semantics

« Support of various syntaxes, annotations, etc.

Figure 2.1: Overview of OWL Ontology.



Language Model

A statistical model that determines the probability distribution of
linguistic units (words, sentences, etc.) in a language.

» Sequential language modelling: P(w;|w;)
» E.g., London is the capital of the

» Masked language modelling: P(w;|w.;, ws;)
 E.g., London is the of the UK.



Language Model

Pre-2000s

¢

Statistical LMs

N-gram
Predict the N'" word based

on the previous N-1 words.

2000 2018 2020
Neural LMs Pre-trained LMs LLMs
RNN-based BERT GPT-3

Recurrent Neural Network
to model text sequences.

Word2Vec

Static word embeddings

learned from distributions.

Seq2Seq

End-to-end encoder-
decoder architecture.

Transformer encoder-based
LM for context-aware word
embeddings.

GPT

Transformer decoder-based
LM for text generation.

Figure 3.1: Evolution of language models.

Scaling up100x parameters
compared to its predecessor.

ChatGPT

Conversational LLM backed
by GPT-3.5/4.

Open-source LLMs

Llama, PaLM, Flan-T5,
Gemma, Mistral, Mamba.,...



LMs for KE

* < Pre-training: Injecting KB semantics into language modelling objectives
*[“IFine-tuning: Adapting pre-trained LMs to specific KE tasks

[v|Prompt learning: Adapting the downstream KE tasks to language
modelling objectives

o[v|Contrastive learning: Learning entity embedding



Publications

« Ontology Alignment (Chapter 4)
« BERTMap [AAAI'22]
» Bio-ML [ISWC'22 & 23]

« Ontology Completion (Chapter 5)
« OntoLAMA [ACL'23]

 Hierarchy Embedding (Chapter 6)
e HiT [under review]



Publications

« Ontology Engineering Library (Chapter 7)
» DeepOnto [SWJ'24]

« Other relevant works for entity linking, KGQA, etc.
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Ontology Alignment

* To determine a set of mappings that indicate semantic relationships
between entities from different ontologies. l

|

equivalence (=), subsumption (E), and

more complex ones

concepts, instances, properties

« Concept equivalence matching is the most prevalent.
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BERTMap
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Figure 4.1: Illustration of the BERTMap system, where the dotted lines indicate optional paths
and the dotted rectangles indicate optional modules.



BERTMap

A general ontology alignment pipeline that works with pre-trained LMs
Leveraging textual, structural, and logical information of ontologies

Primarily unsupervised, but can also be semi-supervised and/or
augmented through external data

Robust performance across several OAElI benchmarks and beyond
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Bio-ML

 Five ontology pairs for both concept equivalence and subsumption
alignment

Source Task Category #SrcCls #TgtCls #Ref(=) #Ref(L)
Mondo OMIM-ORDO Disease 9,648 (+6) 9,275 (+437) 3,721 103
Mondo NCIT-DOID Disease 15,762 (+8,927) 8,465 (+17) 4,686 3,339
UMLS SNOMED-FMA Body 34,418 (+10,236) 88,955 (+24,229) 7,256 5,506
UMLS SNOMED-NCIT Pharm 29,500 (+13,455) 22,136 (+6,886) 5,803 4,225
UMLS SNOMED-NCIT Neoplas 22,971 (+11,700) 20,247 (+6291) 3,804 213

» Evaluating both matching and ranking

« Serving as an OAEI track at ISWC since 2022



Ontology Completion

* To predict missing semantic relationships between entities within an
ontology. I

the missing part may not be inferred

through deductive reasoning

« Concept subsumption inference is a typical setting
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OntoLAMA

« “|Ms-as-KBs": use prompt-based probes to examine if LMs can function

as KBs (through completion tasks)

Extract Entailed Subsumpsion
C = Beef €
D = Meat n 3derivesFrom.Cattle

ﬁ —

Check Assumed Disjointness

Ontology
Verbaliser

V(C) = "beef" Check  __/ X X_

V(D) = "meat that derivbes from cattle" - § )_( >_( — ———————————————
Language Model

Figure 5.1: ONTOLAMA framework.

Positive

Negative

Entailment

Not Entailment
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OntoLAMA

* Probing datasets for atomic/complex Sl tasks from 4 ontologies

* Prompt-based Sl approach:

* Input: Atomic/Complex concepts C and D

* Verbalise them as VV(C) and V(D)
* Wrap them into an NLI template
» Compare [MASK] with label words

n u

positive = {"yes”, “correct’, ...}

n u

negative = {"no”, “wrong’, ...

« Works well in few-shot settings
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Hierarchy Embedding

« To learn a “structure-preserving” function that maps entities in a
hierarchy to a vector space.

| |

taxonomy, ontology TBox, entity embeddings should reflect

knowledge graph hierarchical relationships

* Pre-trained LMs are known to not explicitly encode hierarchical
information
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Hierarchy Transformers

* Re-training transformer encoder-based LMs in hyperbolic space for

!

entity hierarchy embedding
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entity / fruit

Hierarchy Re-trained

Poincareé Ball

distances grow exponentially as
approaching from the origin to the
boundary of this manifold

mathematical guarantee for
embedding tree-like structures
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Hierarchy Transformers

» Hyperbolic clustering loss

» Clustering related entities while
distancing unrelated ones

» Hyperbolic centripetal loss

» Parent entities staying relatively
closer to the manifold’s origin than
their children
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Hierarchy Transformers

Examine the ability of generalising from asserted subsumptions to
inferred and unseen subsumptions

Pre-trained LMs do not encode hierarchical information well
Standard fine-tuning improves but not very effective

More robust than existing hyperbolic embedding approaches
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DeepOnto

» Python library for ontology engineering with deep learning, particularly
language models.
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Conclusion

An investigation of automating ontology engineering with language
models

A detailed background review of ontologies, language models, and
language model for knowledge engineering

Research works for ontology alignment (BERTMap, Bio-ML), ontology
completion (OntoLAMA), and hierarchy embedding (HiT)

DeepOnto as a practical contribution
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