

Language Models for Ontology Engineering

DPhil Viva Presentation

YUAN HE | JUNE 2024

Motivation

- Web is evolving automating knowledge engineering is required
- Language Model + Ontology? Symbolic Neural Reasoning Prediction

Stronger Al system

Motivation

Figure 1.1: A brief comparison of language models and ontologies.

A formal, explicit specification of a shared conceptualisation

Entities: concepts, properties, instances **Axioms**: semantic relationships

Machine-readable and sharable domain knowledge

- **Direct Semantics**
 - **Description logic formalism**
 - High expressiveness & decidable reasoning

RDF-based Semantics

- Graph structure
- Compatible with existing RDF framework
- **Other features**
 - Support of various syntaxes, annotations, etc.

Figure 2.1: Overview of OWL Ontology.

Language Model

- A statistical model that determines the **probability distribution** of **linguistic units** (words, sentences, etc.) in a language.
- Sequential language modelling: $P(w_i|w_{< i})$
 - E.g., London is the capital of the UK
- Masked language modelling: $P(w_i|w_{< i}, w_{> i})$
 - E.g., London is the [MASK] of the UK.

- $P(w_i|w_{< i})$ UK
- $W_i | W_{< i}, W_{> i}$) JK.

Language Model

Figure 3.1: Evolution of language models.

- Pre-training: Injecting KB semantics into language modelling objectives
- Fine-tuning: Adapting pre-trained LMs to specific KE tasks
- Prompt learning: Adapting the downstream KE tasks to language modelling objectives
- **Contrastive learning**: Learning entity embedding

LMs for KE

Publications

- **Ontology Alignment** (Chapter 4)
 - BERTMap [AAAI'22]
 - Bio-ML [ISWC'22 & 23]
- **Ontology Completion** (Chapter 5)
 - OntoLAMA [ACL'23]
- Hierarchy Embedding (Chapter 6)
 - HiT [under review]

Publications

- Ontology Engineering Library (Chapter 7)
 - DeepOnto [SWJ'24]
- Other relevant works for entity linking, KGQA, etc.

between entities from different ontologies.

concepts, instances, properties

Concept equivalence matching is the most prevalent.

• To determine a set of mappings that indicate semantic relationships

equivalence (\equiv), subsumption (\sqsubseteq), and more complex ones

11

Figure 4.1: Illustration of the BERTMap system, where the dotted lines indicate optional paths and the dotted rectangles indicate optional modules.

BERTMap

- A general ontology alignment pipeline that works with pre-trained LMs
- Leveraging textual, structural, and logical information of ontologies
- Primarily unsupervised, but can also be semi-supervised and/or augmented through external data
- Robust performance across several OAEI benchmarks and beyond

BERTMap

Five ontology pairs for both concept equivalence and subsumption alignment

Source	Task	Category	#SrcCls	#TgtCls	#Ref(≡)	#Ref(⊑)
Mondo	OMIM-ORDO	Disease	9,648 (+6)	9,275 (+437)	3,721	103
Mondo	NCIT-DOID	Disease	15,762 (+8,927)	8,465 (+17)	4,686	3,339
UMLS	SNOMED-FMA	Body	34,418 (+10,236)	88,955 (+24,229)	7,256	5,506
UMLS	SNOMED-NCIT	Pharm	29,500 (+13,455)	22,136 (+6,886)	5,803	4,225
UMLS	SNOMED-NCIT	Neoplas	22,971 (+11,700)	20,247 (+6291)	3,804	213

- Evaluating both matching and ranking
- Serving as an **OAEI track** at ISWC since 2022

ontology.

the missing part may not be inferred through deductive reasoning

Concept subsumption inference is a typical setting

Ontology Completion

To predict missing semantic relationships between entities within an

"LMs-as-KBs": use prompt-based probes to examine if LMs can function as KBs (through completion tasks)

Figure 5.1: ONTOLAMA framework.

OntoLAMA

- Probing datasets for atomic/complex SI tasks from 4 ontologies
- Prompt-based SI approach:
 - **Input**: Atomic/Complex concepts *C* and *D*
 - **Verbalise** them as V(C) and V(D)
 - Wrap them into an NLI **template**
 - Compare [MASK] with label words

positive = {"yes", "correct", ...} negative = {"no", "wrong", ...}

Works well in few-shot settings

17

Hierarchy Embedding

 To learn a "structure-preserving" function that maps entities in a hierarchy to a vector space.

taxonomy, ontology TBox, knowledge graph

entity embeddings should reflect hierarchical relationships

 Pre-trained LMs are known to not explicitly encode hierarchical information

entity hierarchy embedding

Pre-trained

Hierarchy Re-trained

Hierarchy Transformers

- Hyperbolic clustering loss
 - Clustering related entities while distancing unrelated ones
- Hyperbolic centripetal loss
 - Parent entities staying relatively closer to the manifold's origin than their children

Hierarchy Transformers

- Examine the ability of generalising from asserted subsumptions to inferred and unseen subsumptions
- Pre-trained LMs do not encode hierarchical information well
- Standard fine-tuning improves but not very effective
- More robust than existing hyperbolic embedding approaches

Hierarchy Transformers

language models.

DeepOnto

• Python library for ontology engineering with deep learning, particularly

- models
- A detailed background review of ontologies, language models, and language model for knowledge engineering
- completion (OntoLAMA), and hierarchy embedding (HiT)
- DeepOnto as a practical contribution

• An investigation of automating ontology engineering with language

• Research works for ontology alignment (BERTMap, Bio-ML), ontology

THANKS!

Supervisors

Prof. Ian Horrocks Prof. Bernardo Cuenca Grau Dr. Jiaoyan Chen

Funding Acknowledgement

Samsung Research UK (SRUK) EPSRC projects OASIS, UK FIRES, and ConCur.

