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• Web is evolving – automating knowledge engineering is required

• Language Model + Ontology?

SymbolicNeural

Prediction Reasoning

Stronger AI system



Motivation
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Ontology
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• A formal, explicit specification of a shared conceptualisation

Entities: concepts, properties, instances
Axioms: semantic relationships

Machine-readable and sharable domain 
knowledge



Ontology
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• Direct Semantics
• Description logic formalism 
• High expressiveness & decidable reasoning

• RDF-based Semantics
• Graph structure
• Compatible with existing RDF framework

• Other features
• Support of various syntaxes, annotations, etc.



Language Model
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• A statistical model that determines the probability distribution of 
linguistic units (words, sentences, etc.) in a language.

• Sequential language modelling: 𝑃 𝑤! 𝑤"!)
• E.g., London is the capital of the 

• Masked language modelling: 𝑃 𝑤! 𝑤"! , 𝑤#!)
• E.g., London is the               of the UK.

UK

[MASK]



Language Model
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LMs for KE
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•  Pre-training: Injecting KB semantics into language modelling objectives

•  Fine-tuning: Adapting pre-trained LMs to specific KE tasks

•  Prompt learning: Adapting the downstream KE tasks to language 
modelling objectives

•  Contrastive learning: Learning entity embedding



Publications
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• Ontology Alignment (Chapter 4)
• BERTMap [AAAI’22] 
• Bio-ML [ISWC’22 & 23]

• Ontology Completion (Chapter 5)
• OntoLAMA [ACL’23]

• Hierarchy Embedding (Chapter 6)
• HiT [under review]



Publications
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• Ontology Engineering Library (Chapter 7)
• DeepOnto [SWJ’24] 

• Other relevant works for entity linking, KGQA, etc.



Ontology Alignment
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• To determine a set of mappings that indicate semantic relationships 
between entities from different ontologies.

• Concept equivalence matching is the most prevalent.

equivalence (≡), subsumption (⊑), and 
more complex onesconcepts, instances, properties



BERTMap
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BERTMap
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• A general ontology alignment pipeline that works with pre-trained LMs

• Leveraging textual, structural, and logical information of ontologies

• Primarily unsupervised, but can also be semi-supervised and/or 
augmented through external data

• Robust performance across several OAEI benchmarks and beyond



Bio-ML
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• Five ontology pairs for both concept equivalence and subsumption 
alignment

• Evaluating both matching and ranking

• Serving as an OAEI track at ISWC since 2022



Ontology Completion
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• To predict missing semantic relationships between entities within an 
ontology.

• Concept subsumption inference is a typical setting

the missing part may not be inferred 
through deductive reasoning



OntoLAMA
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• “LMs-as-KBs”: use prompt-based probes to examine if LMs can function 
as KBs (through completion tasks)



OntoLAMA
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• Probing datasets for atomic/complex SI tasks from 4 ontologies

• Prompt-based SI approach:
• Input: Atomic/Complex concepts 𝐶 and 𝐷
• Verbalise them as 𝑉(𝐶) and 𝑉(𝐷) 
• Wrap them into an NLI template
• Compare [MASK] with label words

• Works well in few-shot settings
 

positive = {“yes”, “correct”, …}
negative = {“no”, “wrong”, …}



Hierarchy Embedding
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• To learn a “structure-preserving” function that maps entities in a 
hierarchy to a vector space.

• Pre-trained LMs are known to not explicitly encode hierarchical 
information

taxonomy, ontology TBox, 
knowledge graph

entity embeddings should reflect 
hierarchical relationships



Hierarchy Transformers
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• Re-training transformer encoder-based LMs in hyperbolic space for 
entity hierarchy embedding

Poincaré Ball

distances grow exponentially as 
approaching from the origin to the 

boundary of this manifold

mathematical guarantee for 
embedding tree-like structures 



Hierarchy Transformers
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• Hyperbolic clustering loss
• Clustering related entities while 

distancing unrelated ones

• Hyperbolic centripetal loss
• Parent entities staying relatively 

closer to the manifold’s origin than 
their children



Hierarchy Transformers
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• Examine the ability of generalising from asserted subsumptions to 
inferred and unseen subsumptions

• Pre-trained LMs do not encode hierarchical information well

• Standard fine-tuning improves but not very effective

• More robust than existing hyperbolic embedding approaches 



DeepOnto
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• Python library for ontology engineering with deep learning, particularly 
language models.



Conclusion
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• An investigation of automating ontology engineering with language 
models

• A detailed background review of ontologies, language models, and 
language model for knowledge engineering

• Research works for ontology alignment (BERTMap, Bio-ML), ontology 
completion (OntoLAMA), and hierarchy embedding (HiT)

• DeepOnto as a practical contribution
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