

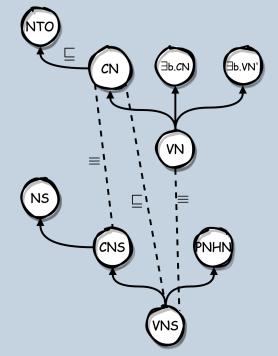
Bio-ML: Machine Learning-Friendly Biomedical Datasets for Equivalence and Subsumption Ontology Matching

Yuan He¹, Jiaoyan Chen¹, Hang Dong¹, Ernesto Jiménez-Ruiz^{2,3}, Ali Hadian⁴, Ian Horrocks¹

¹Unversity of Oxford ²City, University of London

³SIRIUS, University of Oslo

⁴Samsung Research UK



Ontology Matching

 Example of matching T-Box named concepts through equivalence and subsumption relationships.

FMA Axioms

... VestibulocochlearNerve CanialNerve VestibulocochlearNerve Sbranch.CochlearNerve VestibulocochlearNerve Sbranch.VestibularNerve CanialNerve NeuralTreeOrgan ...

SNOMED Axioms

VestibulocochlearNerveStructure CanialNerveStructure VestibulocochlearNerveStructure PeripheralNerveOfHeadAndNeck CanialNerveStructure NerveStructure

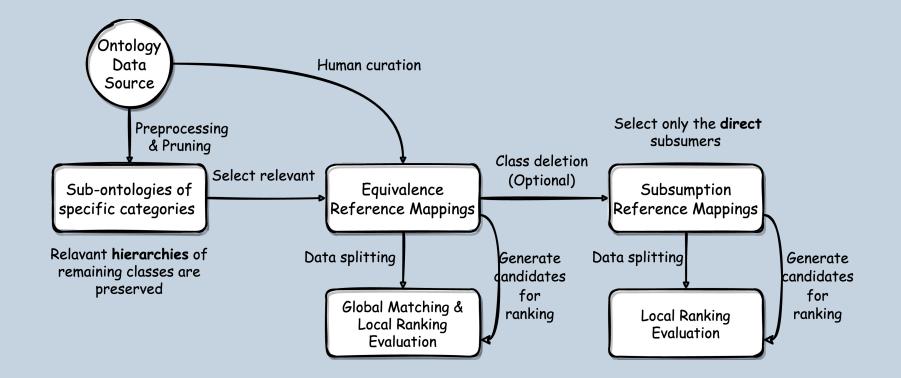
• Motivations: knowledge & data integration, quality assurance, etc.

Challenges & Limitations

Challenges for OM systems

- Variety of naming scheme => synonyms; naming styles
- Ambiguity => similar naming but in different contexts
- Scalability => naïve traversal of OM takes O(n^2)
- Inconsistency => merging ontologies often lead to logical conflicts

Limitations of Existing OM Data


- Lack of **high-quality** gold standard mappings
- Lack of a **unified** evaluation framework
- Often **limited** to equivalence matching
- Lack of support for machine learning-based systems.

Overall Workflow

The 21st International Semantic Web Conference (ISWC2022) ML-Friendly Biomedical Datasets for Equivalence & Subsumption OM

OM Resource Construction

For better quality of reference mappings:

- Industrial collaboration with human expertise (Mondo)
- Large-scale crowd-sourcing (UMLS)

For scalable ontologies, we apply pruning by:

- Keeping concepts of a fine-grained category (disease, anatomy, etc.)
- Preserving relevant hierarchies (*rdfs:subClassOf*) of remaining concepts

To incorporate not just equivalence matching:

- Construct subsumption reference mappings from equivalence reference mappings
- Delete one of the classes in an equivalence mapping used for constructing any subsumption mappings => more challenging

OM Evaluation

For more comprehensive evaluation:

- Global matching evaluation using traditional P/R/F1 metrics
 - To evaluate overall performance of OM systems
 - High-recall systems could be misjudged on incomplete reference mappings
- Local ranking evaluation using ranking metrics such as Hits@K and MRR.
 - To evaluate OM systems' ability on distinguishing the correct mapping from selective negative candidates.
 - Still informative on incomplete reference mappings
 - More efficient way of comparing or developing ML-based systems

OM Evaluation

For fairly comparing both ML-based and non-ML-based systems:

- A validation set for tuning hyper-parameters of ML-based systems or adjusting configurations of non-ML-based systems.
- A *testing* set for final evaluation.
- A *training* set (optional) for (semi-)supervised ML-based systems.

Bio-ML Dataset

Source	Task	Category	#Classes	#RefMaps (equiv)
Mondo	OMIM-ORDO	Disease	9,642-8838	3,721
Mondo	NCIT-DOID	Disease	6,835-8,848	4,684
UMLS	SNOMED-FMA	Body	24,182-64,726	7,256
UMLS	SNOMED-NCIT	Pharm	16,045-15,250	5,803
UMLS	SNOMED-NCIT	Neoplas	11,271-13,956	3,804

Dataset Statistics for Equivalence Ontology Matching

Bio-ML Dataset

Source	Task	Category	#Classes	#RefMaps (subs)
Mondo	OMIM-ORDO	Disease	9,642-8,735	103
Mondo	NCIT-DOID	Disease	6,835-5,113	3,339
UMLS	SNOMED-FMA	Body	24,182-59,567	5,506
UMLS	SNOMED-NCIT	Pharm	16,045-12,462	4,225
UMLS	SNOMED-NCIT	Neoplas	11,271-13,790	213

Dataset Statistics for Subsumption Ontology Matching

Bio-ML Track of OAEI

ALL ALL		Unsupervised (90% Test Mappings)					
A E	\$System	*Precision	*Recall	\$F-score	*MRR	\$Hits@1	
	EditSim	0.912	0.776	0.838	0.904	0.884	
Participa I Initiative	LogMap	0.918	0.667	0.773	0.559	0.364	
Paltation I Initiative	AML	0.873	0.773	0.820			
· ·	BERTMap	0.912	0.829	0.868	0.967	0.953	
	AMD	0.885	0.768	0.823			
NCIT-DOID (Disease) Equivalence Matching (unsupervised)	Matcha-DL						
	LogMap-Lite	0.981	0.578	0.727			
	ATMatcher	0.964	0.603	0.742			
	LSMatch	0.719	0.565	0.633			

Full results: https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/2022/index.html#results

Bio-ML Track of OAEI

ST THE		Semi-supervised (70% Test Mappings)					
Ontology O Tright Ba	\$ System	*Precision	*Recall	\$F-score	\$MRR	\$Hits@1	
$\langle \mathbf{A}^{-}\mathbf{E} \rangle$	EditSim	0.889	0.771	0.826	0.903	0.883	
Et alland I Initiative	LogMap	0.896	0.661	0.761	0.559	0.363	
terion I Initia	AML	0.841	0.770	0.804			
× ·	BERTMap	0.823	0.887	0.854	0.968	0.955	
	AMD	0.858	0.770	0.811			
NCIT-DOID	Matcha-DL	0.955	0.801	0.871	0.810	0.804	
(Disease) Equivalence	LogMap-Lite	0.976	0.575	0.723			
Matching	ATMatcher	0.954	0.604	0.740			
(semi-supervised)	LSMatch	0.665	0.565	0.611			

Sami supervised (70% Test Mannings)

Full results: https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/2022/index.html#results

Bio-ML Track of OAEI

tology Plint		Unsupervised (90% Test Mappings)				
AE	\$System	\$MRR	\$Hits@1	\$Hits@5	≎Hits@10	
	Word2Vec+RF	0.558	0.415	0.731	0.850	
Apple 1 Initiative	OWL2Vec*+RF	0.668	0.540	0.836	0.911	
Figh I thill	BERTSubs (IC)	0.589	0.422	0.816	0.939	
			Semi-supervised	(70% Test Mappin	ıgs)	
SNOMED-FMA	\$System	*MRR	Semi-supervised \$Hits@1	(70% Test Mappin \$Hits@5	rgs) ≎Hits@10	
(Body)	\$System Word2Vec+RF	≵MRR 0.629	-			
			tHits@1	tHits@5	\$Hits@10	

Full results: https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/2022/index.html#results

Discussion

- System performances are **not consistent** across all OM tasks.
- Systems with high F1 scores do not necessarily have high ranking scores.
- Subsumption matching is more **challenging.**
 - Lower scores compared to equivalence matching.
- Detailed OAEI report will come out later.

Future Work

- The proposed ontology pruning is minimal; we can consider logical modules in order to preserve more contexts for pruned concepts
- To construct more OM tasks and consider **anonymizing** the testing set from the participants for more convincing evaluation
- To establish a collaboration loop between automatic OM systems and human curators

 To consider beyond matching just named classes but also complex classes involving restrictions

Thanks for your attention!

Acknowledgement

This work was supported by the SIRIUS Centre for Scalable Data Access (Research Council of Norway, project 237889), eBay, Samsung Research UK, Siemens AG, and the EPSRC projects OASIS (EP/S032347/1), UK FIRES (EP/S019111/1) and ConCur (EP/V050869/1). We would like to to thank the Mondo team, especially Nicolas Matentzoglu and Joe Flake, for their great help in creating the Mondo datasets.

