OAEI-2022 Bio-ML Track: ML-Friendly Biomedical Datasets for Equivalence and Subsumption OM

Yuan He¹, Jiaoyan Chen¹, Hang Dong¹, Ernesto Jiménez–Ruiz^{2,3}, Ian Horrocks¹ 1. Department of Computer Science, University of Oxford; 2. City, University of London; 3. SIRIUS, University of Oslo

Introduction

Ontology Matching

Example of matching T-Box named concepts through equivalence and subsumption relationships

FMA Axioms

VestibulocochlearNerve 🗆 CanialNerve VestibulocochlearNerve 🗆 🛛 branch.CochlearNerve VestibulocochlearNerve 🗌 🛛 branch.VestibularNerve CanialNerve 🗌 NeuralTreeOrgan

SNOMED Axioms

VestibulocochlearNerveStructure 🗆 CanialNerveStructure VestibulocochlearNerveStructure 🗌 PeripheralNerveOfHeadAndNeck CanialNerveStructure 🗌 NerveStructure

Motivations: knowledge & data integration, quality assurance

Challenges for OM systems	Limitations
 Variety of naming scheme => synonyms; naming styles Ambiguity => similar naming but in different contexts Scalability => naïve traversal of OM takes O(n^2) Inconsistency => merging ontologies often lead to logical conflicts 	 Lack of high- standard ma Lack of a uni framework Often limited matching Lack of supp learning-bas

Datasets and Settings

Source	Task	Category	#Classes	#RefMaps (equiv)		#Classes	#RefMaps (subs)
Mondo	OMIM-ORDO	Disease	9,642-8838	3,721		9,642-8,735	103
Mondo	NCIT-DOID	Disease	6,835-8,848	4,684		6,835-5,113	3,339
UMLS	SNOMED-FMA	Body	24,182-64,726	7,256		24,182-59,567	5,506
UMLS	SNOMED-NCIT	Pharm	16,045-15,250	5,803	-	16,045-12,462	4,225
UMLS	SNOMED-NCIT	Neoplas	11,271-13,956	3,804		11,271-13,790	213
							· · · · · · · · · · · · · · · · · · ·

Statistics for Equivalence Matching

- Matching: equivalence & subsumption
- Splitting: Unsupervised & semi-supervised
- Evaluation: global matching & local ranking

s of Existing OM Data

-quality gold appings ified evaluation

d to equivalence

ort for **machine** sed systems

Overall Workflow

Statistics for Subsumption Matching

Equivalence Matching

- (and -DL)
- LSMatcher
- scores of all tasks

Subsumption Matching

- ML-based systems including Word2Vec, OWL2Vec*, BERTSubs
- BERTSubs performs the best on 2 out of 5 subsumption tasks, while OWL2Vec* performs the best on the remaining 3
- No participation of traditional systems

- Still too few participants using ML methods
- Only 3 participants on subsumption matching which is more challenging
- Some participants only submit the results
- How to encourage both reproducibility and participation enthusiasm?
- is required

Samsung Research

Participants & Results

ML-based systems including BERTMap (and -Lite), AMD, Matcha

DEPARTMENT OF

SCIENCE

Traditional systems including LogMap (and -Lite), ATMatcher,

• ML systems generally perform better with Match-DL attaining best F1 on 4 out of 5 semi-supervised tasks, BERTMap (and lite) attains best F1 on 4 out of 5 unsupervised tasks, and best ranking

Full results: https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/2022/#results

Conclusion and Discussion

A systematic benchmarking study on ML-based OM systems