Exploring Large Language Models for Ontology Alignment

Yuan He¹, Jiaoyan Chen^{1,2}, Hang Dong¹, Ian Horrocks¹ ¹University of Oxford, ²University of Manchester

The University of Manchester

Introduction

Ontology Alignment

- The task of identifying the set of **mappings** that indicate semantic relationships between entities from different ontologies.
- This work focuses on **concept equivalence matching**. Given the source and target ontologies, denoted as \mathcal{O}_{src} and \mathcal{O}_{tgt} , and their respective sets of named concepts

Evaluation

Dataset Construction

- Evaluating LLMs with the current OM datasets can be time and resource intensive. Naïve traversal of aligned concepts takes quadratic search time.
- Two subsets (each has 10K concept pairs excluding the string-matched ones) from NCIT-DOID and SNOMED-FMA (Body) datasets of the OAEI Bio-ML track.

 C_{src} and C_{tgt} , the objective is to generate a set of mappings in the form of $(c \in C_{src}, c' \in C_{tgt}, s_{c \equiv c'})$, where $s_{C \equiv C'} \in [0, 1]$ is a score that reflects the likelihood of the equivalence $c \equiv c'$.

Ontology \mathcal{O}_{src}

Ontology \mathcal{O}_{tgt}

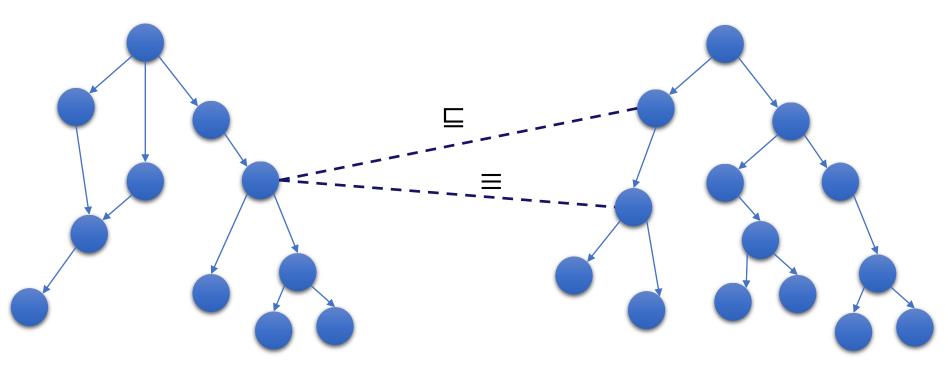


Figure 1. Illustration of concept equivalence and subsumption alignment.

- Motivations:
 - Integrate data from heterogeneous sources.
 - Facilitate semantic interoperability.

Large Language Model (LLM)

• Transformer architecture.

- Specifically, we sample 50 source ontology concepts that have matched target ontology concepts and 50 that do not. For each sampled concept, we select **100** challenging candidate concepts from the target ontology, and in total (50+50)*100=10K pairs.
- Note that for the 50 matched source concepts, the reference target concept is included in the candidate set.

Metrics and Results

• Matching Evaluation: systems are expected to predict true mappings out of 10K concepts and compare against the 50 ground truth mappings using Precision, Recall, F1:

$$P = \frac{|M_{pred} \cap M_{ref}|}{|M_{pred}|}, R = \frac{|M_{pred} \cap M_{ref}|}{|M_{ref}|}, F1 = \frac{2PR}{P+R}$$

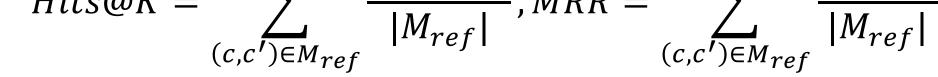
• **Ranking Evaluation**: systems are expected to identify the correct match among challenging candidates; this can be reflected by the ranking metrics Hits@1 and MRR:

$$Vits@K = \sum \frac{\mathbb{I}_{rank_{c'} \le K}}{MRR} = \sum \frac{rank_{c'}^{-1}}{MRR}$$

- Massive number of parameters. E.g., GPT-4 1.7 trillion.
- Instruction-tuning with task-specific prompts.
- Foundational model expected to be applied to a diverse range of tasks.
- Main problem is requiring **extensive resources** for testing.
- Previous works have demonstrated the efficacy of LMs in ontology alignment, e.g.,
 - BERTMap [He et al. AAAI'22] (pipeline);
 - Truveta Mapper [Amir et al. arxiv] (translation);
 - LaKERMap [Wang et al. arxiv] (embedding).

Methodology

- **Concept Identification**: A sub-task defined for alignment, where LLMs are asked to determine ("Yes" or "No") if two concepts are identical given their names and (optionally) relevant hierarchical contexts.
- Template: To avoid excessive prompt engineering, we



• **Rejection Rate**: for the 50 unmatched source concepts, the systems are expected to predict all their candidate mappings as false mappings (a successful rejection):

$$RR = \sum_{(c,c_{null})\in M_{unref}} \prod_{d\in T_c} \frac{(1 - \mathbb{I}_{c\equiv d})}{|M_{unref}|}$$

System	Precision	Recall	F-score	Hits@1	MRR	RR
Flan-T5-XXL	0.643	0.720	0.679	0.860	0.927	0.860
+ threshold	0.861	0.620	0.721	0.860	0.927	0.940
+ parent/child	0.597	0.740	0.661	$0.880 \\ 0.880$	0.926	0.760
+ threshold & parent/child	0.750	0.480	0.585		0.926	0.920
GPT-3.5-turbo	0.217	0.560	0.313	-	-	-
BERTMap	0.750	0.540	0.628	0.900	0.940	0.920
BERTMapLt	0.196	0.180	0.187	0.460	0.516	0.920

Table 1

Results on the challenging subset of the NCIT-DOID equivalence matching dataset of Bio-ML.

System	Precision	Recall	F-score	Hits@1	MRR	RR
Flan-T5-XXL	0.257	0.360	0.300	0.500	0.655	0.640
+ threshold	0.452	0.280	0.346	0.500	0.655	0.820
+ parent/child	0.387	0.240	0.296	0.540	0.667	0.900
+ threshold & parent/child	0.429	0.120	0.188	0.540	0.667	0.940
GPT-3.5-turbo	0.075	0.540	0.132	-	-	_
BERTMap	0.485	0.640	0.552	0.540	0.723	0.920
BERTMapLt	0.516	0.320	0.395	0.340	0.543	0.960

passed the task description to GPT-4 and asked it to generate a task-specific prompt template for LLMs.

Given the lists of names *and hierarchical relationships* associated with two concepts, your task is to determine whether these concepts are identical or not. Consider the following:

Source Concept Names: <list of concept names>

Parent Concepts of the Source Concept: <list of concept names>

Child Concepts of the Source Concept: <list of concept names>

... (same for the target concept)

Analyze the names *and the hierarchical information* provided for each concept and provide a conclusion on whether these two concepts are identical or different ("Yes" or "No") based on their associated names *and hierarchical relationships*.

Figure 2. The prompt template for the concept identification task generated by GPT-4.

• **Prediction**: The alignment scores are extracted based on the generation probabilities of "Yes" or "No" answers.

Table 2

Results on the challenging subset of the SNOMED-FMA (Body) equivalence matching dataset of Bio-ML.

Resources

 In OAEI Bio-ML 2023, we release Bio-LLM, a special sub-track for LLM-based alignment, using the proposed datasets.

 Check our Python package DeepOnto for ontology engineering with deep learning; the documentation Bio-ML is available at the tutorial section.

The 22nd International Semantic Web Conference (ISWC 2023) Exploring Large Language Models for Ontology Alignment