DeepOnto: A Python Package for Ontology Engineering with Deep Learning and Language Models

Yuan He

Department of Computer Science

University of Oxford

yuan.he@cs.ox.ac.uk

Ontology

• An ontology is an **explicit specification** of a **conceptualisation**.

model of domain knowledge

- What are explicitly specified?
 - The set of entities: concepts, properties, and instances.
 - The (logical) **relationships** among them.
- Web Ontology Language (OWL):
 - (W3C) standardisation.
 - High expressiveness.
 - Reasoning capabilities.

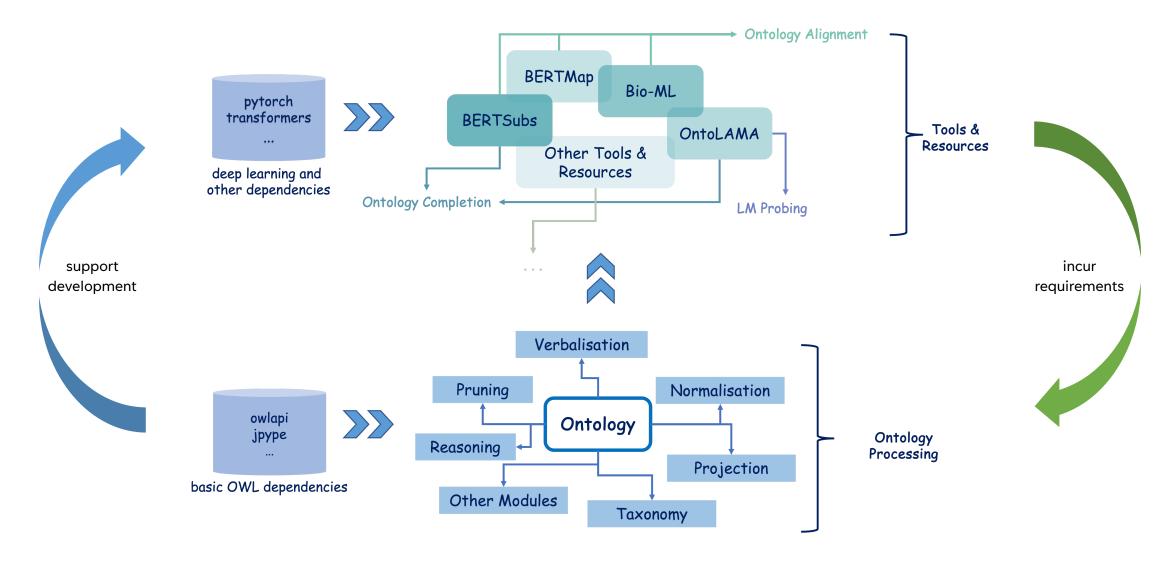
Ontology Engineering

- Concerns different stages of ontology development.
 - E.g., ontology design, construction, curation, etc.
- Challenges:
 - Scalability: knowledge is ever-expanding.
 - Quality assurance: consistency, completeness.
 - Integration: merging data from heterogeneous sources.

Automation is Required

Solution:

Build ontology engineering systems with **Deep Learning**, and particularly, **Language Models**.


DeepOnto

A Python package for ontology engineering with deep learning.

We will briefly introduce:

- Overview.
- Dependencies.
- Ontology processing modules.
- Tools and resources built upon the modules.
- Long-term stability.
- Impact and use.

Overview

Dependencies

• OWL API (Java-based) for basic ontology processing features.

• PyTorch for deep learning framework.

• Huggingface Transformers for language models.

Dependencies

- Reliable and stable ontology APIs were mainly built with Java:
 - E.g., The OWL API, Jena, Jcel, etc.
- Previous attempt on solely Python build failed:
 - Owlready2 lacked essential features.
 - Requires considerable low-level engineering efforts if build from scratch.

Dependencies

Q: Why Python?

- Mainstream open-source deep learning frameworks are Python-based.
- E.g., load a pre-trained distilled BERT:

```
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```

Figure: Code snippet taken from the Huggingface Transformers documentation.

To bridge Java and Python, we used JPype.

The Base Ontology Class

deeponto.onto.Ontology

- Encapsulate basic features from the OWL API, such as:
 - Access and manipulate entities and axioms.
 - Query for (asserted) annotations, parents and children.

Ontology Reasoning

deeponto.onto.OntologyReasoner

- Conduct reasoning on ontologies such as:
 - Various entailment and consistency checks.
 - More complex reasoning subject to task requirements.
- Different types of reasoners supported.
 - **HermiT**: sound and complete.
 - ELK: tailored to OWL EL.
 - Struct: simple structural reasoning.

Ontology Verbalisation

deeponto.onto.OntologyVerbaliser

- Verbalising complex concepts into natural language texts.
- A rule-based recursive algorithm is implemented.
- Useful for models (e.g., language model-based) that take textual inputs.

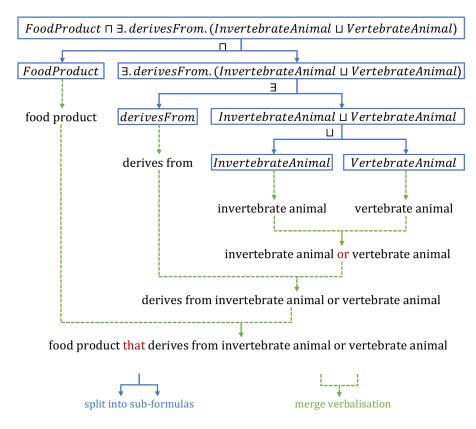


Figure: Example taken from the OntoLAMA paper by He et al. (ACL'23: Findings).

Ontology Pruning

deeponto.onto.OntologyPruner

- Extract sub-ontologies.
- Current implementation based on reconstructing subsumptions.
- Preserving logical modules as a future work.

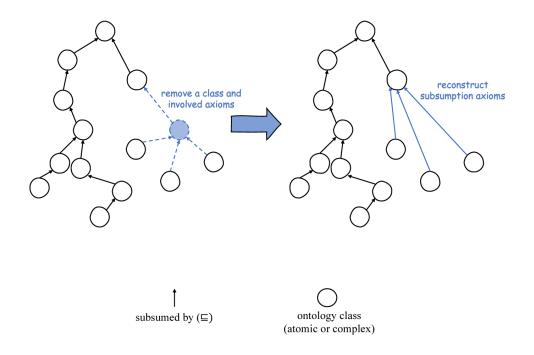


Figure: Illustration of the pruning algorithm from the Bio-ML paper by He et al. (ISWC'22).

Ontology-to-Graph

deeponto.onto.OntologyProjector

• Project an ontology into triples.

deeponto.onto.OntologyTaxonomy

• Extract subsumption hierarchy (tree graph) from an ontology.

To support:

• Graph-based deep learning models, e.g., OWL2Vec*, TransE.

More Processing Modules

deeponto.onto.OntologyNormaliser

• Normalise axioms into basic forms to support, e.g., logical embedding.

deeponto.onto.OntologyModulariser (future work)

• Extract logical modules for a given set of axioms.

Tools and Resources

 The ontology processing modules are building blocks for tools and resources.

 DeepOnto currently incorporates tools and resources mainly for ontology alignment and completion.

Task Definitions

• Ontology Alignment is the task of identifying the set of mappings (that indicate semantic relationships) between entities from different ontologies.

• Ontology Completion is the task of identifying missing semantic relationships between entities within the same ontology.

Ontology Alignment

• BERTMap for concept equivalence ontology alignment.

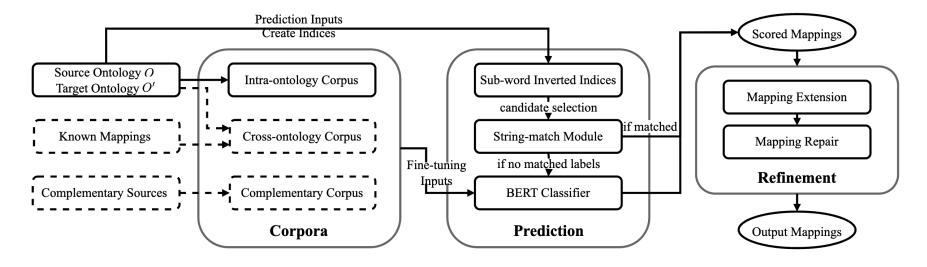


Figure: Illustration of the BERTMap system by He et al. (AAAI'22).

Ontology Alignment

• **Bio-ML**: a resource for concept equivalence and subsumption alignment (used in the OAEI track since 2022).

Ontology Completion

• **BERTSubs** for predicting missing subsumption relationships between ontology concepts.

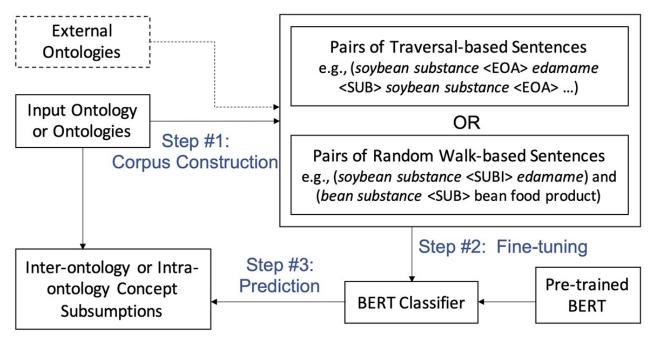


Figure: Illustration of the BERTSubs system by Chen et al. (WWWJ'23).

Ontology Completion

 OntoLAMA is originally for probing conceptual knowledge (from ontologies) encoded by language models. The probing method based on prompt learning can be adopted for ontology completion.

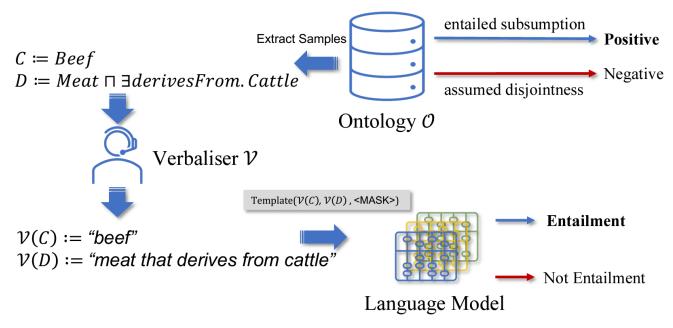


Figure: Illustration of the OntoLAMA framework by He et al. (ACL'23: Findings).

More Tools and Resources

 Ontology construction and curation encompass a diverse range of tasks besides alignment and completion.

• Even settings within alignment and completion vary.

• DeepOnto will incorporate **more tools and resources** for tasks like ontology embedding, concept insertion, and more.

Long-term Stability

• The OWL API 4 is **statically deployed** – so the ontology processing features are relatively stable.

• Deep learning frameworks are rapidly developing but they are actively maintained for **backward compatibility**.

Impact and Use

• DeepOnto has been adopted in by **Samsung Research UK** (SRUK) for developing Digital Health Coaching.

 DeepOnto offers resources and evaluation framework for the Bio-ML track of the OAEI.

• Received help requests for research, internship, micro-services, etc.

Impact and Use

• Still a young package gaining attention from the community.

• Feedback and help/feature requests are extremely welcomed.

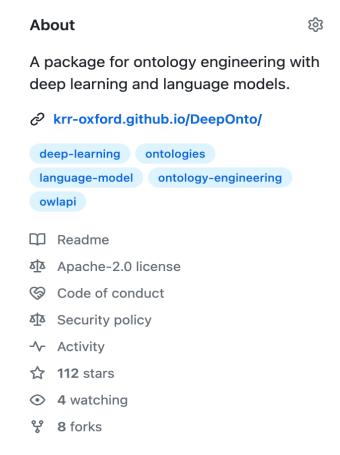


Figure: DeepOnto's GitHub statistics on 17th October 2023.

THANK YOU!