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About Me

• Applied Scientist at Amazon Rufus

• LLMs for E-commerce

• Visiting Researcher at CAMEL-AI

• Autonomous AI Agents

• Oxford PhD & Postdoc

• LLMs for Knowledge Engineering

• Fun fact: I seem to only work with animals
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Ontology Alignment

• We build knowledge — we must reuse and share it. 

• Ontology alignment = linking entities across different ontologies so 

information can flow between them



Ontology Alignment

• More formally, ontology alignment means identifying mappings between 

entities in different ontologies to specify their relationships

Fig. Example subsumption alignment between HeLis (Left) and FoodOn (Right) 
[Chen et al., WWW 2023]



Ontology Alignment

• Q: How does alignment help knowledge sharing?

• Example: 𝑆𝑜𝑦𝑀𝑖𝑙𝑘𝐻𝑒𝐿𝑖𝑠 ≡ 𝑆𝑜𝑦𝑏𝑒𝑎𝑛𝑀𝑖𝑙𝑘𝐹𝑜𝑜𝑑𝑂𝑛

• In HeLis, there is no class named 𝑆𝑜𝑦𝑏𝑒𝑎𝑛𝐵𝑒𝑣𝑒𝑟𝑎𝑔𝑒

• Through alignment, beverage information can be transferred from 

FoodOn to HeLis

• Challenge: Ontologies are often designed for different domain-specific 

purposes. As a result, taxonomy structures and entity naming can differ 

significantly.



Ontology Alignment

• Two prevalent relationships for alignment:

• Equivalence (≡): two entities are the same

• Subsumption (⊑): one entity is a subclass of another

• Mapping:

• Triple form: 𝑒𝑛𝑡𝑖𝑡𝑦1, 𝑒𝑛𝑡𝑖𝑡𝑦2, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
• Quadruple form: (𝑒𝑛𝑡𝑖𝑡𝑦₁, 𝑒𝑛𝑡𝑖𝑡𝑦₂, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑠𝑐𝑜𝑟𝑒) (probabilistic)

• Example: (𝑆𝑜𝑦𝑀𝑖𝑙𝑘, 𝑆𝑜𝑦𝑏𝑒𝑎𝑛𝑀𝑖𝑙𝑘, ≡, 0.82)

• Beyond ≡ and ⊑: 𝑝𝑎𝑟𝑡𝑂𝑓, 𝑑𝑒𝑟𝑖𝑣𝑒𝑑𝐹𝑟𝑜𝑚 …



Ontology Alignment

• Q: What if alignment leads to inconsistency

• Axioms in the merged ontology logically contradict each other

• E.g., We have an equivalence mapping 𝑆𝑜𝑦𝑀𝑖𝑙𝑘 ≡ 𝑆𝑜𝑦𝐵𝑒𝑎𝑛𝑀𝑖𝑙𝑘 but …

• One ontology: 𝑆𝑜𝑦𝑀𝑖𝑙𝑘 ⊑ 𝐷𝑎𝑖𝑟𝑦𝑃𝑟𝑜𝑑𝑢𝑐𝑡 

• Another ontology: 𝑆𝑜𝑦𝐵𝑒𝑎𝑛𝑀𝑖𝑙𝑘 ⊑ ¬𝐷𝑎𝑖𝑟𝑦𝑃𝑟𝑜𝑑𝑢𝑐𝑡 

• → Contradiction arises.



Ontology Alignment

• Two possibilities:

1. Alignment is wrong

2. Alignment reveals hidden errors in individual ontologies

• Solutions:

• Human resolution: Experts consolidate conflicts 

• Automated resolution: Repair algorithms remove a minimal set of 

mappings to restore consistency



Ontology Alignment

• Ontology alignment is labor-intensive — yet reusing knowledge is essential

• We need less manual effort  and more autonomy 

• Language models offer a promising path towards automation
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• Sequential Language Modeling: 𝑃 𝑤𝑖 𝑤<𝑖)

• N-gram: 𝑃 𝑤𝑖 𝑤𝑖−𝑁<𝑡<𝑖)

• RNN: 𝑃 𝑤𝑖 𝑤𝑖−1, ℎ𝑖−1)

• GPT: 𝑃 𝑤𝑖  Attention(𝑤<𝑖))

• Masked Language Modeling: 𝑃 𝑤𝑖 𝑤<𝑖 , 𝑤>𝑖)

• BERT: 𝑃 𝑤𝑖  Attention(𝑤∖𝑖))

Language Model

…



Transformer



Attention Mechanism

The bank robber was seen fishing on the river bank.

<MASK>

<MASK>

→ Attention enables LMs to capture word meaning from context



Attention Mechanism

• Q: How does this help ontology alignment

• LMs bring strong language understanding 

• They can align linguistic variations (e.g., 𝑆𝑜𝑦𝑀𝑖𝑙𝑘 vs. 𝑆𝑜𝑦𝑏𝑒𝑎𝑛𝑀𝑖𝑙𝑘) 

• No need to consult dictionaries (as in the traditional rule-based 

ontology alignment systems) — context does the work



Pre-training

• Train on massive unlabeled corpora 

• Masked token prediction for encoder-based models, e.g., BERT 

• Next token prediction for decoder-based models, e.g., GPT

The LLM pretraining mindset, distilled.



Fine-tuning

• Pre-trained LMs are general-purpose 

• Fine-tuning adapts them to specific tasks & domains 

• Strategies include: 

• Full fine-tuning → update all parameters 

• Parameter-efficient tuning → adapters, LoRA, etc. 

• Prompt-based tuning → reframe tasks into LM-friendly text



Fine-tuning (BERT)

• Ex1. Add task-specific layer 

• Input: [𝐶𝐿𝑆] 𝑡𝑒𝑥𝑡1 [𝑆𝐸𝑃] 𝑡𝑒𝑥𝑡2 [𝑆𝐸𝑃] … 

• Use [𝐶𝐿𝑆] embedding for classification 

• Fast training (≤  5 epochs) 

• Ex2. Embedding-based contrastive learning

• Tune embeddings directly (no extra layers) 

• Maximize 𝑠𝑖𝑚(𝑒, 𝑒⁺), minimize 𝑠𝑖𝑚(𝑒, 𝑒⁻) 

• Example: synonyms closer, antonyms farther 



Fine-tuning (GPT)

• Ex3. Instruction fine-tuning 

• System prompts guide models: “You’re a helpful assistant for some 

task…” 

• Model follows the instruction and generates answers accordingly

•  Modern LLMs can often handle this in a zero-shot setting

• Ex4. RLVR 

• Train LLMs to figure out a reasoning trace that leads to a verifiable 

reward (e.g., correct number in a math problem)



Many Concepts?

• You may have encountered a flood of terminology — pre-training, mid-

training, post-training, instruction fine-tuning, RLHF, RLVR …

• In fact: When you try to figure out how these terms relate to each other, 

you’re already performing alignment — connecting concepts across 

vocabularies.



Back to Alignment!

• Q: How does this help ontology alignment  

• LMs gain vast background knowledge through pre-training 

• LMs can be adapted to specific tasks like ontology alignment through 

fine-tuning 

• Q: But ontology alignment isn’t really a pure text task, is it

• Right — which is why we need tailored fine-tuning objectives 

designed specifically for ontology alignment
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Common Components

•  Lexical matching → “The starting point: matching entity names, 

synonyms, or descriptions.”

•  Structural matching → “We can leverage ontology graph structure — 

parents, children, neighbors.”

•  Logical repair → “After mappings, inconsistencies creep in. Repair 

mechanisms keep the merged ontology consistent.”



LogMap

• A well-known classical ontology aligner [Jiménez-Ruiz et al., 2011]

• Algorithm in a nutshell

• 1️⃣ Seed mappings from exact lexical matches

• 2️⃣ Expand locally: check if parents/children of aligned entities are also 

aligned (locality principle) 

• 3️⃣ Consistency check: reason over mappings, remove low-scored 

(through lexical matching) ones if inconsistent

• 4️⃣ Iterate steps 2–3 until no further expansion is possible



LogMap

• Pros

• Fast and scalable: graph expansion runs in linear time

• Consistency-aware: minimizes logical inconsistency in alignments

• Cons

• Heavy reliance on lexical heuristics and external dictionaries

• Limited to equivalence matching (cannot capture subsumption or 

complex relations)



BERTMap

• The first (arguably) language model-based aligner [He et al., 2022]

Fig. Illustration of the BERTMap system [He et al., AAAI 2022]



BERTMap

•  Corpus construction: Builds rich intra-ontology and cross-ontology 

corpora for fine-tuning

•  Fine-tuning BERT: Uses ontology-specific corpora to adapt BERT for 

alignment tasks

•  Efficient candidate selection: Sub-word inverted indices narrow down 

possible matches

•  Refinement module: Mapping extension + repair to further improve 

precision and recall of final alignments



Using Text in Ontologies

•  As mentioned, ontology alignment isn’t a pure text task …

• But ontologies do contain text …

• Entity names are usually defined by 𝑟𝑑𝑓𝑠: 𝑙𝑎𝑏𝑒𝑙

• Aliases / synonyms from other annotation properties

•  We can build a domain-specific text corpus (like a thesaurus) to 

support alignment



Using Text in Ontologies

• Assumption 1 (Positive samples): 

• Labels of the same entity are considered synonyms 

• Synonym pairs → positive training examples

• Assumption 2 (Negative samples): 

• Labels of different entities are non-synonymous 

• Non-synonym pairs → negative training examples



Using Text in Ontologies

• Lexical matching as classification: 

• Fine-tune a language model (e.g., BERT) to decide if two labels are 

synonyms.

• Approach in BERTMap:

• Use the [CLS] token with a downstream classifier → outputs a binary 

synonym/non-synonym score.

• Alternative approach (contrastive): 

• Train embeddings so that synonym pairs are pulled closer and non-

synonyms pushed apart.



Using Text in Ontologies

• Advantage over rule-based (e.g., LogMap) 

• Captures nuanced text semantics (beyond string matching) 

• No heuristics or external dictionaries needed

• Advantage over other ML approaches

• Self-supervised by default → many ontologies naturally provide 

synonym and non-synonym pairs 

• No manual labels required; can still be extended with supervision or 

auxiliary data



More Advanced Methods?

• Q: Can we go beyond text classification and leverage more advanced LMs 

such as ChatGPT or Gemini for ontology alignment  

 𝒀𝒆𝒔, but …

• Naively comparing every entity pair is 𝑂(𝑁²) — infeasible for large ontologies

• Thus, we need to pair LLMs with an efficient retriever

• Recall: 

• LogMap’s local expansion → linear 

• BERTMap’s sub-word index–based candidate selection → linear 

•  Advanced methods must also preserve efficiency



Retrieve-then-Rerank

• The Retrieve-then-Rerank paradigm: a hybrid two-stage approach 

• Retriever → efficiently narrows down candidate alignments 

• Re-ranker → reorders candidates using deeper, fine-grained reasoning

• Key idea: Efficiency and recall first, precision second. 

• In practice: 

• BERT (or similar encoder models) = Retriever 

• ChatGPT / Gemini (decoder LMs) = Re-ranker



Retrieve-then-Rerank

LLM-based Re-ranking

BERT (Retriever)

{Instruction Prompt}

{Candidates:

       {entity info}

       {entity info}

       {entity info}

       {entity info}

              …

}

{Decision}

GPT (Re-ranker)

Embedding-based Retrieval

entities from two ontologies



Even More Autonomous?

• So far, we’ve looked at ontology alignment through structured pipelines …

• But can we push further towards autonomy? 

• → What if an LLM could understand the task itself, and make alignment 

decisions dynamically — without relying on a rigid, pre-defined pipeline?
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LLMs as Agents

• With sufficient in-context learning and reasoning capabilities, an LLM can 

serve as an agent that acts according to its state in the environment

Richard S. Sutton and Andrew G. Barto, “Reinforcement 

Learning: An Introduction,” 2018



Agentic Ontology Alignment

• Q: What capabilities or tools do LLM agents need to perform ontology 

alignment

• A: Equip the agent with tools to access and reason over ontology data, for 

example:

• SPARQL Engine → query ontology databases

• Semantic Retriever → fetch candidate entities

• Ontology Reasoner → check logical consistency

• (… and other domain-specific tools)



Agentic Ontology Alignment

User: Please align two ontologies … [Attachment]: ontology_1, ontology_2

Assistant: Okay, first I will make a plan …

Assistant: Using SPARQL engine to query entity information … 

Assistant: Using Semantic Retriever to find candidate matches …

Assistant: Detected inconsistency → applying repair strategy …



Thanks!
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Homepage: https://www.yuanhe.wiki/ | LinkedIn: www.linkedin.com/in/lawhy | X: @lawhy_X

https://www.yuanhe.wiki/
http://www.linkedin.com/in/lawhy
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