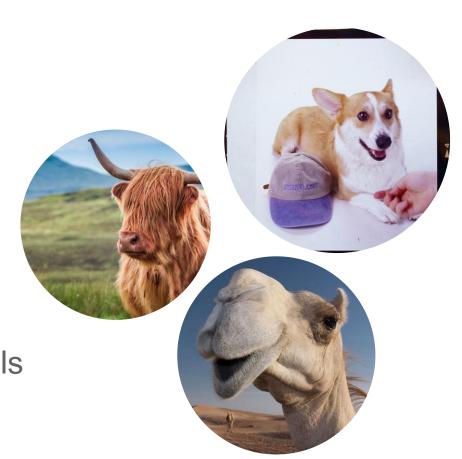
Guest Lecture Language Models for Ontology Alignment

Knowledge and Data

Yuan He

About Me

- Applied Scientist at Amazon Rufus \$\fmathfrak{m}\$
 - LLMs for E-commerce
- - Autonomous Al Agents
- Oxford PhD & Postdoc
 - LLMs for Knowledge Engineering
- Fun fact: I seem to only work with animals



Outline

- 1. Ontology Alignment: Motivation & Challenges
- 2. Primer on Language Models
- 3. Methods for Ontology Alignment
- 4. Towards Agentic Workflow
- 5. Q&A / Discussion

- We build knowledge we must reuse and share it.
- Ontology alignment = linking entities across different ontologies so information can flow between them

 More formally, ontology alignment means identifying mappings between entities in different ontologies to specify their relationships

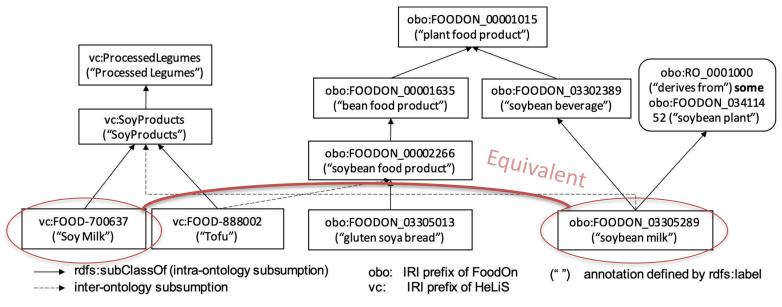


Fig. Example subsumption alignment between HeLis (Left) and FoodOn (Right) [Chen et al., WWW 2023]

- Q: How does alignment help knowledge sharing?
 - Example: $SoyMilk_{HeLis} \equiv SoybeanMilk_{FoodOn}$
 - In HeLis, there is no class named SoybeanBeverage
 - Through alignment, beverage information can be transferred from FoodOn to HeLis

 Challenge: Ontologies are often designed for different domain-specific purposes. As a result, taxonomy structures and entity naming can differ significantly.

- Two prevalent relationships for alignment:
 - Equivalence (≡): two entities are the same
 - Subsumption (⊆): one entity is a subclass of another

- Mapping:
 - Triple form: $(entity_1, entity_2, relation)$
 - Quadruple form: (entity₁, entity₂, relation, score) (probabilistic)
 - Example: $(SoyMilk, SoybeanMilk, \equiv, 0.82)$
- Beyond \equiv and \sqsubseteq : partOf, derivedFrom ...

- Q: What if alignment leads to inconsistency ?
 - Axioms in the merged ontology logically contradict each other

- E.g., We have an equivalence mapping $SoyMilk \equiv SoyBeanMilk$ but ...
 - One ontology: $SoyMilk \sqsubseteq DairyProduct$
 - Another ontology: $SoyBeanMilk \sqsubseteq \neg DairyProduct$
 - → Contradiction arises.

- Two possibilities:
 - 1. Alignment is wrong
 - 2. Alignment reveals hidden errors in individual ontologies
- Solutions:
 - Human resolution: Experts consolidate conflicts
 - Automated resolution: Repair algorithms remove a minimal set of mappings to restore consistency

- Ontology alignment is labor-intensive yet reusing knowledge is essential
- We need less manual effort of and more autonomy
- Language models offer a promising path towards automation

Outline

- 1. Ontology Alignment: Motivation & Challenges
- 2. Primer on Language Models
- 3. Methods for Ontology Alignment
- 4. Towards Agentic Workflow
- 5. Q&A / Discussion

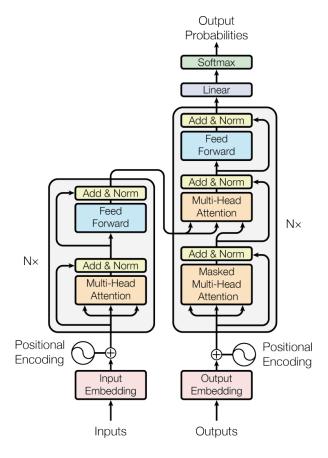
Language Model

- Sequential Language Modeling: $P(w_i|w_{< i})$
 - N-gram: $P(w_i|w_{i-N < t < i})$
 - RNN: $P(w_i|w_{i-1},h_{i-1})$
 - $GPT: P(w_i | Attention(w_{< i})) \longrightarrow \emptyset$
- Masked Language Modeling: $P(w_i|w_{< i}, w_{> i})$
 - BERT: $P(w_i | \text{Attention}(w_{\setminus i}))$

Transformer

BERT

Encoder

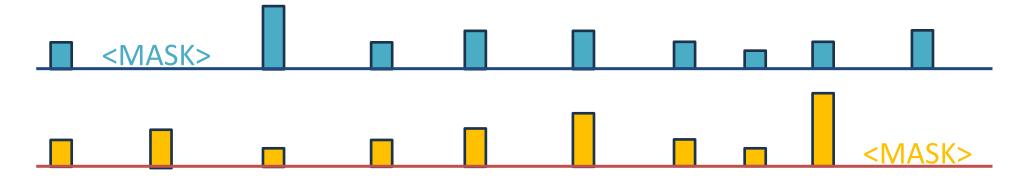


GPT

Decoder

Attention Mechanism

The bank robber was seen fishing on the river bank.



→ Attention enables LMs to capture word meaning from context

Attention Mechanism

- Q: How does this help ontology alignment ?
 - LMs bring strong language understanding
 - They can align linguistic variations (e.g., SoyMilk vs. SoybeanMilk)
 - No need to consult dictionaries (as in the traditional rule-based ontology alignment systems) — context does the work

Pre-training

- Train on massive unlabeled corpora
- Masked token prediction for encoder-based models, e.g., BERT
- Next token prediction for decoder-based models, e.g., GPT

The LLM pretraining mindset, distilled.

Fine-tuning

- Pre-trained LMs are general-purpose
- Fine-tuning adapts them to specific tasks & domains
- Strategies include:
 - Full fine-tuning → update all parameters
 - Parameter-efficient tuning → adapters, LoRA, etc.
 - Prompt-based tuning → reframe tasks into LM-friendly text

Fine-tuning (BERT)

- \[
 \bigsig
 \quad
 \bigsig
 \quad
 \quad
 \bigsig
 \quad
 - Input: [CLS] text1 [SEP] text2 [SEP] ...
 - Use [CLS] embedding for classification
 - Fast training (\leq 5 epochs)
- § Ex2. Embedding-based contrastive learning
 - Tune embeddings directly (no extra layers)
 - Maximize $sim(e, e^+)$, minimize $sim(e, e^-)$
 - Example: synonyms closer, antonyms farther

Fine-tuning (GPT)

- § Ex3. Instruction fine-tuning
 - System prompts guide models: "You're a helpful assistant for some task..."
 - Model follows the instruction and generates answers accordingly
 - Modern LLMs can often handle this in a zero-shot setting
- § Ex4. RLVR
 - Train LLMs to figure out a reasoning trace that leads to a verifiable reward (e.g., correct number in a math problem)

Many Concepts?

 You may have encountered a flood of terminology — pre-training, midtraining, post-training, instruction fine-tuning, RLHF, RLVR ...



In fact: When you try to figure out how these terms relate to each other, you're already performing alignment — connecting concepts across vocabularies.

Back to Alignment!

- Q: How does this help ontology alignment ?
 - LMs gain vast background knowledge through pre-training
 - LMs can be adapted to specific tasks like ontology alignment through fine-tuning
- Q: But ontology alignment isn't really a pure text task, is it ?
 - Right which is why we need tailored fine-tuning objectives designed specifically for ontology alignment

Outline

- 1. Ontology Alignment: Motivation & Challenges
- 2. Primer on Language Models
- 3. Methods for Ontology Alignment
- 4. Towards Agentic Workflow
- 5. Q&A / Discussion

Common Components

- Lexical matching → "The starting point: matching entity names, synonyms, or descriptions."
- Structural matching → "We can leverage ontology graph structure parents, children, neighbors."
- Logical repair → "After mappings, inconsistencies creep in. Repair mechanisms keep the merged ontology consistent."

LogMap

- A well-known classical ontology aligner [Jiménez-Ruiz et al., 2011]
- Algorithm in a nutshell
 - 1 Seed mappings from exact lexical matches
 - **2 Expand locally**: check if parents/children of aligned entities are also aligned (*locality principle*)
 - 3 Consistency check: reason over mappings, remove low-scored (through lexical matching) ones if inconsistent
 - Iterate steps 2–3 until no further expansion is possible

LogMap

- Pros
 - Fast and scalable: graph expansion runs in linear time
 - Consistency-aware: minimizes logical inconsistency in alignments
- Cons
 - Heavy reliance on lexical heuristics and external dictionaries
 - Limited to equivalence matching (cannot capture subsumption or complex relations)

BERTMap

The first (arguably) language model-based aligner [He et al., 2022]

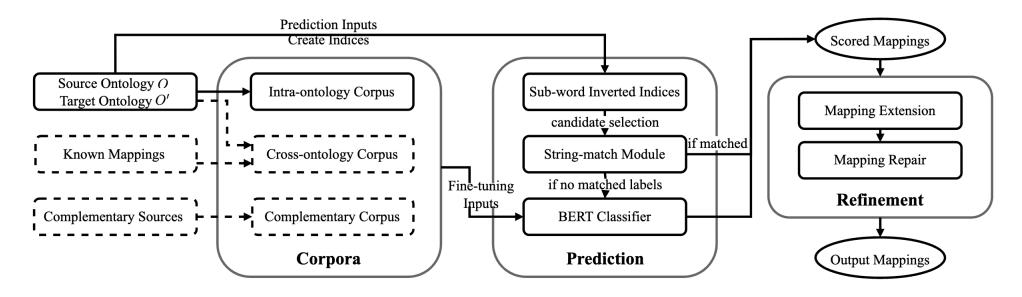


Fig. Illustration of the BERTMap system [He et al., AAAI 2022]

BERTMap

- Corpus construction: Builds rich intra-ontology and cross-ontology corpora for fine-tuning
- Fine-tuning BERT: Uses ontology-specific corpora to adapt BERT for alignment tasks
- Efficient candidate selection: Sub-word inverted indices narrow down possible matches
- Refinement module: Mapping extension + repair to further improve precision and recall of final alignments

- As mentioned, ontology alignment isn't a pure text task
- But ontologies do contain text
 - Entity names are usually defined by rdfs: label
 - Aliases / synonyms from other annotation properties
- We can build a **domain-specific text corpus** (like a *thesaurus*) to support alignment

- Assumption 1 (Positive samples):
 - Labels of the same entity are considered synonyms
 - Synonym pairs → positive training examples
- Assumption 2 (Negative samples):
 - Labels of different entities are non-synonymous
 - Non-synonym pairs → negative training examples

Lexical matching as classification:

 Fine-tune a language model (e.g., BERT) to decide if two labels are synonyms.

Approach in BERTMap:

 Use the [CLS] token with a downstream classifier → outputs a binary synonym/non-synonym score.

Alternative approach (contrastive):

 Train embeddings so that synonym pairs are pulled closer and nonsynonyms pushed apart.

- Advantage over rule-based (e.g., LogMap)
 - Captures nuanced text semantics (beyond string matching)
 - No heuristics or external dictionaries needed

- Advantage over other ML approaches
 - Self-supervised by default → many ontologies naturally provide synonym and non-synonym pairs
 - No manual labels required; can still be extended with supervision or auxiliary data

More Advanced Methods?

 Q: Can we go beyond text classification and leverage more advanced LMs such as ChatGPT or Gemini for ontology alignment ?

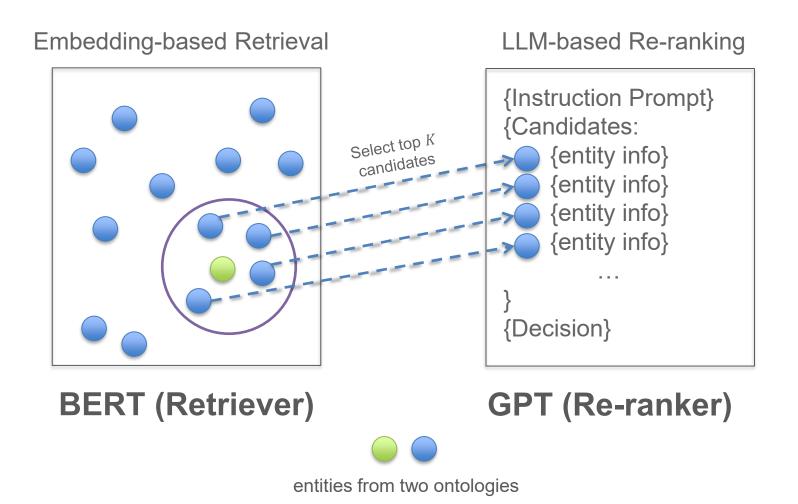
- Naively comparing every entity pair is $O(N^2)$ infeasible for large ontologies
- Thus, we need to pair LLMs with an efficient retriever
- Recall:
 - LogMap's local expansion → linear
 - BERTMap's sub-word index—based candidate selection → linear
 - Advanced methods must also preserve efficiency

Retrieve-then-Rerank

- The Retrieve-then-Rerank paradigm: a hybrid two-stage approach
 - Retriever → efficiently narrows down candidate alignments
 - Re-ranker → reorders candidates using deeper, fine-grained reasoning
- Key idea: Efficiency and recall first, precision second.

- In practice:
 - BERT (or similar encoder models) = Retriever
 - ChatGPT / Gemini (decoder LMs) = Re-ranker

Retrieve-then-Rerank



Even More Autonomous?

So far, we've looked at ontology alignment through structured pipelines ...

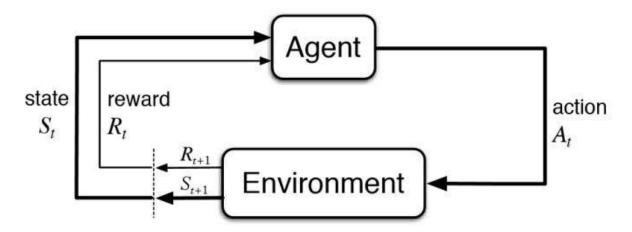
- But can we push further towards autonomy?
 - What if an LLM could understand the task itself, and make alignment decisions dynamically — without relying on a rigid, pre-defined pipeline?

Outline

- 1. Ontology Alignment: Motivation & Challenges
- 2. Primer on Language Models
- 3. Methods for Ontology Alignment
- 4. Towards Agentic Workflow
- 5. Q&A / Discussion

LLMs as Agents

 With sufficient in-context learning and reasoning capabilities, an LLM can serve as an agent that acts according to its state in the environment



Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning: An Introduction," 2018

Agentic Ontology Alignment

 Q: What capabilities or tools do LLM agents need to perform ontology alignment ?

- A: Equip the agent with tools to access and reason over ontology data, for example:
 - SPARQL Engine → query ontology databases
 - Semantic Retriever → fetch candidate entities
 - Ontology Reasoner → check logical consistency
 - (... and other domain-specific tools)

Agentic Ontology Alignment

■ User: Please align two ontologies ... [Attachment]: ontology_1, ontology_2

Assistant: Okay, first I will make a plan ...

Assistant: Using SPARQL engine to query entity information ...

Assistant: Using Semantic Retriever to find candidate matches ...

♠ Assistant: Detected inconsistency → applying repair strategy ...

Thanks!

- 1. Ontology Alignment: Motivation & Challenges
- 2. Primer on Language Models
- 3. Methods for Ontology Alignment
- 4. Towards Agentic Workflow
- 5. Q&A / Discussion

Homepage: https://www.yuanhe.wiki/ | LinkedIn: www.linkedin.com/in/lawhy | X: @lawhy_X