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Applied Scientist at Amazon Rufus %3
 LLMs for E-commerce

Visiting Researcher at CAMEL-AI
 Autonomous Al Agents

Oxford PhD & Postdoc ¥

 LLMs for Knowledge Engineering

Fun fact: | seem to only work with animals



o &~ w0 b =

Outline

Ontology Alignment: Motivation & Challenges
Primer on Language Models

Methods for Ontology Alignment

Towards Agentic Workflow

Q&A / Discussion



Ontology Alignment

 We build knowledge — we must reuse and share it.

 Ontology alignment = linking entities across different ontologies so
information can flow between them
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Ontology Alignment

vc:ProcessedLegumes
(“Processed Legumes”)

obo:FOODON_00001015
(“plantfood product”)

e

More formally, ontology alignment means identifying mappings between
entities in different ontologies to specify their relationships

obo:RO_0001000

A

obo:FOODO

vc:SoyProducts
(“SoyProducts”)

(“bean food product”)

N_00001635

obo:FOODON_03302389
(“soybean beverage”)

(“derives from”) some
0bo:FOODON_034114
52 (“soybean plant”)

A

obo:FOODO

(“soybean food product”)

N_00002266

4D N—-

vc:FOOD-700637
(“Soy Milk”)

vc:FOOD-888002
(“Tofu”)

0bo:FOODON_03305013
(“gluten soyabread”)

— rdfs:subClassOf (intra-ontology subsumption)
----» inter-ontology subsumption

VC:

obo: IRl prefix of FoodOn

IRI prefix of HeLiS

0bo:FOODON_03305289
(“soybean milk”)

)

(“”) annotation defined by rdfs:label

Fig. Example subsumption alignment between Helis (Left) and FoodOn (Right)

[Chen et al.,

WWW 2023]



Ontology Alignment

 Q: How does alignment help knowledge sharing?
« Example: SoyMilky,;;c = SoybeanMilkr,,q0n
* |In Hellis, there is no class named SoybeanBeverage

« Through alignment, beverage information can be transferred from
FoodOn to Helis

« Challenge: Ontologies are often designed for different domain-specific
purposes. As a result, taxonomy structures and entity naming can differ
significantly.



Ontology Alignment

« Two prevalent relationships for alignment:
« Equivalence (=): two entities are the same
« Subsumption (C): one entity is a subclass of another

 Mapping:
« Triple form: (entity,, entity,, relation)
* Quadruple form: (entity,, entity,, relation, score) (probabilistic)
 Example: (SoyMilk, SoybeanMilk, =, 0.82)

 Beyond = and C: partOf, derivedFrom ...



Ontology Alignment

« Q: What if alignment leads to inconsistency ?
« Axioms in the merged ontology logically contradict each other

 E.g., We have an equivalence mapping SoyMilk = SoyBeanMilk but ...
 One ontology: SoyMilk E DairyProduct
* Another ontology: SoyBeanMilk = —DairyProduct

« — Contradiction arises.



Ontology Alignment

 Two possibilities:
1. Alignment is wrong

2. Alignment reveals hidden errors in individual ontologies

e Solutions:
 Human resolution: Experts consolidate conflicts

« Automated resolution: Repair algorithms remove a minimal set of
mappings to restore consistency



Ontology Alignment

* Ontology alignment is labor-intensive — yet reusing knowledge is essential
«  We need less manual effort % and more autonomy &)

 Language models offer a promising path towards automation
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Language Model

« Sequential Language Modeling: P(w;|lw;)
*  N-gram: P(w;|w;_y<t<i)
*  RNN: P(w;|w;_1,hi_1)

 GPT: P(w;| Attention(w,;)) > @ *

« Masked Language Modeling: P(w;|w.;, ws;)
*  BERT: P(w;| Attention(w\;))
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Attention Mechanism

The bank robber was seen fishing on the river
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— Attention enables LMs to capture word meaning from context



Attention Mechanism

« Q: How does this help ontology alignment ?
 LMs bring strong language understanding
« They can align linguistic variations (e.g., SoyMilk vs. SoybeanMilk)

 No need to consult dictionaries (as in the traditional rule-based
ontology alignment systems) — context does the work



Pre-training

 Train on massive unlabeled corpora
« Masked token prediction for encoder-based models, e.g., BERT
* Next token prediction for decoder-based models, e.g., GPT
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EVERYTHING:

The LLM pretraining mindset, distilled.



Fine-tuning

* Pre-trained LMs are general-purpose
* Fine-tuning adapts them to specific tasks & domains

« Strategies include:
* Full fine-tuning — update all parameters
 Parameter-efficient tuning — adapters, LoRA, etc.
Prompt-based tuning — reframe tasks into LM-friendly text



Fine-tuning (BERT)

¢ Ex1. Add task-specific layer
Input: [CLS] textl [SEP] text2 [SEP] ...

Use [CLS] embedding for classification
« Fast training (< 5 epochs)

¢ Ex2. Embedding-based contrastive learning
Tune embeddings directly (no extra layers)
Maximize sim(e, e™), minimize sim(e,e”)

Example: synonyms closer, antonyms farther



Fine-tuning (GPT)

¢ Ex3. Instruction fine-tuning

System prompts guide models: “You're a helpful assistant for some
task...”

Model follows the instruction and generates answers accordingly
¥ Modern LLMs can often handle this in a zero-shot setting

¢ Ex4. RLVR

Train LLMs to figure out a reasoning trace that leads to a verifiable
reward (e.g., correct number in a math problem)



Many Concepts?

* You may have encountered a flood of terminology — pre-training, mid-
training, post-training, instruction fine-tuning, RLHF, RLVR ...

MUCHSTO:LEARN
& D

£ g ]
YOU'STILL HAVE
* In fact: When you try to figure out how these terms relate to each other,

you're already performing alignment — connecting concepts across
vocabularies.



Back to Alignment!

« Q: How does this help ontology alignment ?
 LMs gain vast background knowledge through pre-training

 LMs can be adapted to specific tasks like ontology alignment through
fine-tuning

- Q: But ontology alignment isn’t really a pure text task, is it ?

* Right — which is why we need tailored fine-tuning objectives
designed specifically for ontology alignment
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Common Components

- 4 Lexical matching — “The starting point: matching entity names,
synonyms, or descriptions.”

- [Z Structural matching — “We can leverage ontology graph structure —
parents, children, neighbors.”

- [ Logical repair — “After mappings, inconsistencies creep in. Repair
mechanisms keep the merged ontology consistent.”



LogMap

* A well-known classical ontology aligner [Jiménez-Ruiz et al., 2011]
« Algorithm in a nutshell

1) Seed mappings from exact lexical matches

« |2 Expand locally: check if parents/children of aligned entities are also
aligned (locality principle)

 |3] Consistency check: reason over mappings, remove low-scored
(through lexical matching) ones if inconsistent

o | 4] lterate steps 2—3 until no further expansion is possible




LogMap

o Pros
 Fast and scalable: graph expansion runs in linear time

« Consistency-aware: minimizes logical inconsistency in alignments

- @Cons
 Heavy reliance on lexical heuristics and external dictionaries

- Limited to equivalence matching (cannot capture subsumption or
complex relations)



BERTMap

The first (arguably) language model-based aligner [He et al., 2022]
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BERTMap

L Corpus construction: Builds rich intra-ontology and cross-ontology
corpora for fine-tuning

».» Fine-tuning BERT: Uses ontology-specific corpora to adapt BERT for
alignment tasks

4 Efficient candidate selection: Sub-word inverted indices narrow down
possible matches

Refinement module: Mapping extension + repair to further improve
precision and recall of final alignments



Using Text in Ontologies

« (& As mentioned, ontology alignment isn’t a pure text task ...

« @ But ontologies do contain text ...
« Entity names are usually defined by rdfs: label
« Aliases / synonyms from other annotation properties

« & We can build a domain-specific text corpus (like a thesaurus) to
support alignment



Using Text in Ontologies

 Assumption 1 (Positive samples):
« Labels of the same entity are considered synonyms

« Synonym pairs — positive training examples

« Assumption 2 (Negative samples):
« Labels of different entities are non-synonymous

 Non-synonym pairs — negative training examples



Using Text in Ontologies

Lexical matching as classification:

* Fine-tune a language model (e.g., BERT) to decide if two labels are
synonyms.

Approach in BERTMap:

« Use the [CLS] token with a downstream classifier — outputs a binary
synonym/non-synonym score.

Alternative approach (contrastive):

* Train embeddings so that synonym pairs are pulled closer and non-
synonyms pushed apart.



Using Text in Ontologies

« Advantage over rule-based (e.g., LogMap)
« Captures nuanced text semantics (beyond string matching)
* No heuristics or external dictionaries needed

 Advantage over other ML approaches

« Self-supervised by default — many ontologies naturally provide
synonym and non-synonym pairs

 No manual labels required; can still be extended with supervision or
auxiliary data



More Advanced Methods?

Q: Can we go beyond text classification and leverage more advanced LMs
such as ChatGPT or Gemini for ontology alignment ?

4 Yes, but ...

Naively comparing every entity pair is O0(N*) — infeasible for large ontologies
Thus, we need to pair LLMs with an efficient retriever

Recall:

 LogMap’s local expansion — linear

« BERTMap’s sub-word index—based candidate selection — linear

4% Advanced methods must also preserve efficiency



Retrieve-then-Rerank

* The Retrieve-then-Rerank paradigm: a hybrid two-stage approach
* Retriever — efficiently narrows down candidate alignments

 Re-ranker — reorders candidates using deeper, fine-grained reasoning
* Key idea: Efficiency and recall first, precision second.
* |n practice:

 BERT (or similar encoder models) = Retriever
 ChatGPT / Gemini (decoder LMs) = Re-ranker



Retrieve-then-Rerank

Embedding-based Retrieval LLM-based Re-ranking
{Instruction Prompt}
@ {Candidates:
- @ {entity info}
—>»@ {entity info}
® —>@ {entity info}
_»@ {entity info}
}
- ® {Decision}
BERT (Retriever) GPT (Re-ranker)

N

entities from two ontologies



Even More Autonomous?

« So far, we've looked at ontology alignment through structured pipelines ...

« But can we push further towards autonomy?

« — What if an LLM could understand the task itself, and make alignment
decisions dynamically — without relying on a rigid, pre-defined pipeline?
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LLMs as Agents

« With sufficient in-context learning and reasoning capabilities, an LLM can
serve as an agent that acts according to its state in the environment

’_l Agent ]
state reward action

s, | |R A

t+1

!
PECSY U
P | Environment

Richard S. Sutton and Andrew G. Barto, “Reinforcement
Learning: An Introduction,” 2018




Agentic Ontology Alignment

* Q: What capabilities or tools do LLM agents need to perform ontology
alignment ?

« A: Equip the agent with tools to access and reason over ontology data, for
example:

« SPARQL Engine — query ontology databases
 Semantic Retriever — fetch candidate entities

« Ontology Reasoner — check logical consistency
« (... and other domain-specific tools)



Agentic Ontology Alignment

User: Please align two ontologies ... [Attachment]: ontology_1, ontology 2
-~ Assistant: Okay, first | will make a plan ...

2 Assistant: Using SPARQL engine to query entity information ...

- Assistant: Using Semantic Retriever to find candidate matches ...

-~ Assistant: Detected inconsistency - applying repair strategy ...
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Homepage: https://www.yuanhe.wiki/ | LinkedIn: www.linkedin.com/in/lawhy | X: @lawhy_X
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